A Statistical Approach for Quantifying Group Difference in Topic Distributions Using Clinical Discourse Samples

Grace O. Lawley¹, Peter A. Heeman¹, Jill K. Dolata², Eric Fombonne³, Steven Bedrick⁴

¹Computer Science and Engineering

²Department of Pediatrics

³Department of Psychiatry

⁴Department of Medical Informatics and Clinical Epidemiology Oregon Health & Science University, Portland, Oregon, USA

SIGdial & INLG 2023 September 13th, 2023

Outline of this presentation

- 1. Motivation
- 2. Describe a statistical approach for explore and quantify topic distributions captured by topic models
- 3. Demonstrate its application using LDA and 2 corpora
 - 20Newsgroups Usenet posts from different topics
 - Clinical corpus Language samples of Autistic* and Typically Developing (TD) children

^{*} We are using identity-first language (i.e., Autistic children) here instead of person-first language (i.e., children with Autism) as the former is the current preference among many Autistic individuals (Brown, n.d.).

- Topic modeling
 - Many different topics covered over course of a text or dialogue
 - Grouping documents into categories of topics covered

- Topic modeling
 - Many different topics covered over course of a text or dialogue
 - Grouping documents into categories of topics covered
- Current methods for evaluating topic distributions
 - Intrinsic methods, such as within-topic coherence
 - To our knowledge, shortage of methods for statistical comparisons

- Topic modeling
 - Many different topics covered over course of a text or dialogue
 - Grouping documents into categories of topics covered
- Current methods for evaluating topic distributions
 - Intrinsic methods, such as within-topic coherence
 - To our knowledge, shortage of methods for statistical comparisons
- Latent Dirichlet Allocation (LDA; Blei et al., 2003)
 - Capture and quantify topic distributions for a collection of language samples

Latent Dirichlet Allocation (LDA)

- LDA is a unsupervised, generative probabilistic model that is used on a corpus of text documents to model each document as a finite mixture over k topics
- Each document
 - Treated as a bag-of-words
 - Represented as a set of words and associated frequencies

Latent Dirichlet Allocation (LDA)

- LDA is a unsupervised, generative probabilistic model that is used on a corpus of text documents to model each document as a finite mixture over \boldsymbol{k} topics
- Each document
 - Treated as a bag-of-words
 - Represented as a set of words and associated frequencies
- Given M documents and an integer k, LDA produces
 - $M \times k$ document-topic matrix (θ)
 - $k \times V$ topic-word matrix (β) where V is total number of unique words across entire corpus

Latent Dirichlet Allocation (LDA)

- LDA is a unsupervised, generative probabilistic model that is used on a corpus of text documents to model each document as a finite mixture over k topics
- Each document
 - Treated as a bag-of-words
 - Represented as a set of words and associated frequencies
- Given M documents and an integer k, LDA produces
 - $M \times k$ document-topic matrix (θ)
 - $k \times V$ topic-word matrix (β) where V is total number of unique words across entire corpus

- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic

$$\begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \dots & \theta_{1,k} \\ \theta_{2,1} & \theta_{2,2} & \dots & \theta_{2,k} \\ \theta_{3,1} & \theta_{3,2} & \dots & \theta_{3,k} \\ \vdots & \vdots & \vdots & \vdots \\ \theta_{M,1} & \theta_{M,2} & \dots & \theta_{M,k} \end{bmatrix}$$

- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic
- Each document can be represented as a k-dimensional topic distribution vector

$$\begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \dots & \theta_{1,k} \\ \theta_{2,1} & \theta_{2,2} & \dots & \theta_{2,k} \\ \theta_{3,1} & \theta_{3,2} & \dots & \theta_{3,k} \\ \vdots & \vdots & \vdots & \vdots \\ \theta_{M,1} & \theta_{M,2} & \dots & \theta_{M,k} \end{bmatrix}$$

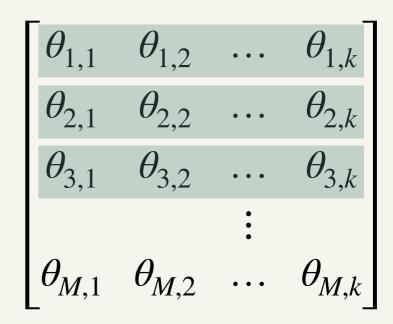
- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic
- Each document can be represented as a k-dimensional topic distribution vector

$$\begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \dots & \theta_{1,k} \\ \theta_{2,1} & \theta_{2,2} & \dots & \theta_{2,k} \\ \theta_{3,1} & \theta_{3,2} & \dots & \theta_{3,k} \\ \vdots & \vdots & \vdots & \vdots \\ \theta_{M,1} & \theta_{M,2} & \dots & \theta_{M,k} \end{bmatrix}$$

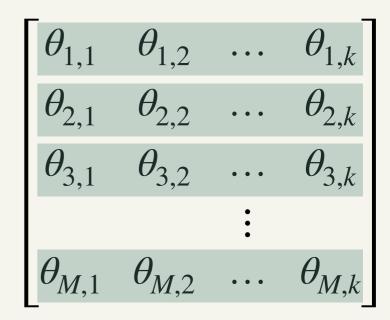
- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic
- Each document can be represented as a k-dimensional topic distribution vector

$$\begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \dots & \theta_{1,k} \\ \theta_{2,1} & \theta_{2,2} & \dots & \theta_{2,k} \\ \theta_{3,1} & \theta_{3,2} & \dots & \theta_{3,k} \\ \vdots & \vdots & \vdots & \vdots \\ \theta_{M,1} & \theta_{M,2} & \dots & \theta_{M,k} \end{bmatrix}$$

- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic
- Each document can be represented as a k-dimensional topic distribution vector



- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic
- Each document can be represented as a k-dimensional topic distribution vector



- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic

$$\begin{bmatrix} \theta_{2,1} & \theta_{2,2} & \dots & \theta_{2,k} \\ \theta_{3,1} & \theta_{3,2} & \dots & \theta_{3,k} \\ \vdots & \vdots & \vdots \\ \theta_{M,1} & \theta_{M,2} & \dots & \theta_{M,k} \end{bmatrix}$$

- Each document can be represented as a k-dimensional topic distribution vector
 - Feature vectors for document classification or clustering
 - Proxy for document content for qualitative analyses

- Document-topic matrix, heta
 - Each row = single document
 - Each column = single topic
- The elements in θ are the estimated proportion of words in a document that were generated by a given topic

- Each document can be represented as a k-dimensional topic distribution vector
 - Feature vectors for document classification or clustering
 - Proxy for document content for qualitative analyses

 To our knowledge, a statistical method for comparing topic distribution vectors between groups of documents has not yet been proposed

- One reason for this is due to certain numerical properties of topic distribution vectors which make them unsuitable for many parametric statistical methods
 - Each component is bounded between 0 and 1
 - All components sum to 1

- One reason for this is due to certain numerical properties of topic distribution vectors which make them unsuitable for many parametric statistical methods
 - Each component is bounded between 0 and 1
 - All components sum to 1
- Realized that topic distribution vectors meet the definition of compositional data since components are proportions and all sum to 1
- Compositional data (Aitchison 1982) are vectors of positive numbers that together represent parts of some whole
 - e.g., the demographic profile of a city, the mineral composition of rocks

- One reason for this is due to certain numerical properties of topic distribution vectors which make them unsuitable for many parametric statistical methods
 - Each component is bounded between 0 and 1
 - All components sum to 1
- Realized that topic distribution vectors meet the definition of compositional data since components are proportions and all sum to 1
- Compositional data (Aitchison 1982) are vectors of positive numbers that together represent parts of some whole
 - e.g., the demographic profile of a city, the mineral composition of rocks
- Isometric logratio (ILR) transformation (Egozcue et al., 2003)
 - ILR: $S^D \to \mathbb{R}^{D-1}$
 - Maps compositional data from its original sample space (D-part simplex) into real space (D-1 Euclidean space) with all metric properties preserved
 - After the transformation, we are able to use classical multivariate analysis tools

- Multivariate Analysis of Means (MANOVA)
 - Compares multivariate sample means
 - Requires a number of statistical assumptions to be met before using (described in more detail in the paper)
 - Examines effect of one discrete, independent variable on multiple dependent variables
 - Independent variable —> topic label // diagnostic group
 - Dependent variables —> topic distribution probabilities in the document-topic distribution matrix created by LDA, $\theta_{i,1}, \theta_{i,2}, ..., \theta_{i,k-1}$ where i=1,2,...,M

- Multivariate Analysis of Means (MANOVA)
 - Compares multivariate sample means
 - Requires a number of statistical assumptions to be met before using (described in more detail in the paper)
 - Examines effect of one discrete, independent variable on multiple dependent variables
 - Independent variable —> topic label // diagnostic group
 - Dependent variables —> topic distribution probabilities in the document-topic distribution matrix created by LDA, $\theta_{i,1}, \theta_{i,2}, ..., \theta_{i,k-1}$ where i=1,2,...,M

One dimension is removed during the ILR transformation

- Multivariate Analysis of Means (MANOVA)
 - Compares multivariate sample means
 - Requires a number of statistical assumptions to be met before using (described in more detail in the paper)
 - Examines effect of one discrete, independent variable on multiple dependent variables
 - Independent variable —> topic label // diagnostic group
 - Dependent variables —> topic distribution probabilities in the document-topic distribution matrix created by LDA, $\theta_{i,1}, \theta_{i,2}, ..., \theta_{i,k-1}$ where i=1,2,...,M
- After MANOVA, calculate effect size
 - Partial eta-squared (η^2)
 - What proportion of the variance of the linear combination of topics can be explained by the independent variable

One dimension is

removed during the

ILR transformation

Statistical Approach

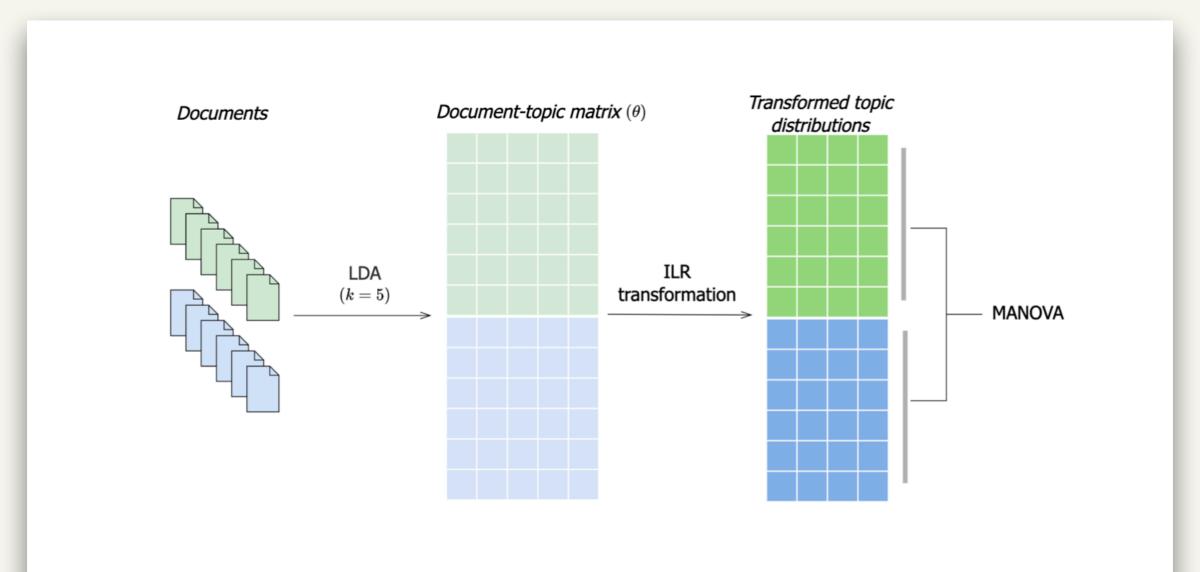


Figure 1: Example workflow for the described statistical approach described to explore and quantify group differences in topic distributions captured by topic models.

- Collection of ~18,000 posts from twenty different Usenet* newsgroups
- Widely used for text classification and analysis

*Usenet was an early internet-based network of hierarchally-organized discussion groups where users could post messages about a given topic.

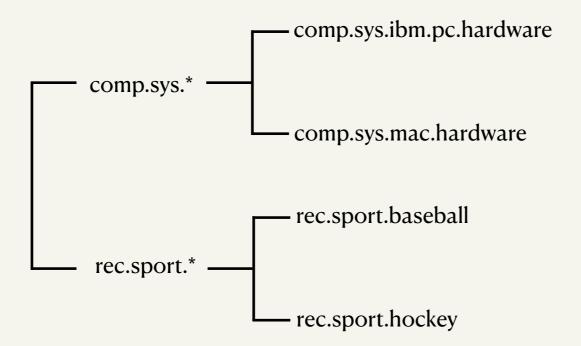
- Collection of ~18,000 posts from twenty different Usenet* newsgroups
- Widely used for text classification and analysis
- Used documents from four topics
 - comp.sys.ibm.pc.hardware
 - comp.sys.mac.hardware
 - rec.sport.baseball
 - rec.sport.hockey

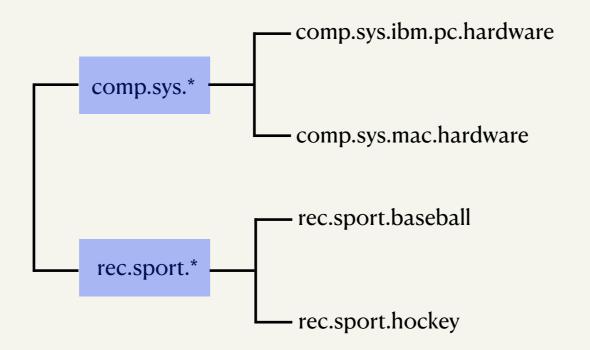
*Usenet was an early internet-based network of hierarchally-organized discussion groups where users could post messages about a given topic.

- Collection of ~18,000 posts from twenty different Usenet* newsgroups
- Widely used for text classification and analysis
- Used documents from four topics
 - comp.sys.ibm.pc.hardware
 - comp.sys.mac.hardware
 - rec.sport.baseball
 - rec.sport.hockey

*Usenet was an early internet-based network of hierarchally-organized discussion groups where users could post messages about a given topic.

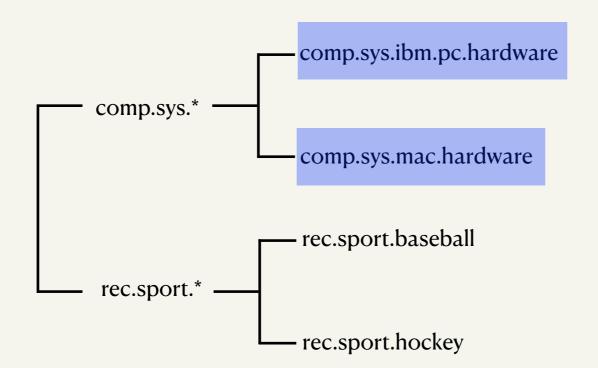
- Fit a single LDA model with a k value of 20
- Transformed topic distribution vectors using ILR transformation
- Checked MANOVA assumptions (detailed in paper)
- Performed 7 MANOVA tests





Between broader categories (x1)

Hypothesis: topic distributions will be very different

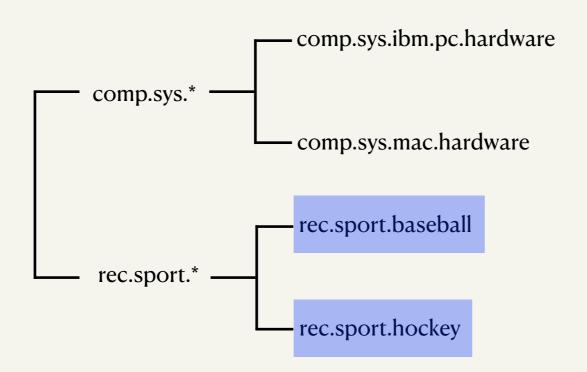


Between broader categories (x1)

Hypothesis: topic distributions will be very different

2. Between subcategories (x2)

Hypothesis: topic distributions will also be different, but not as different as previous comparison

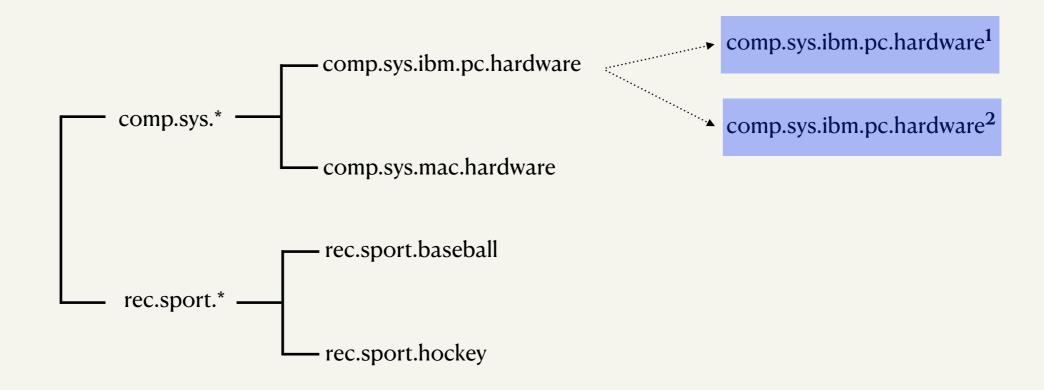


Between broader categories (x1)

Hypothesis: topic distributions will be very different

2. Between subcategories (x2)

Hypothesis: topic distributions will also be different, but not as different as previous comparison



Between broader categories (x1)

Hypothesis: topic distributions will be very different

2. Between subcategories (x2)

Hypothesis: topic distributions will also be different, but not as different as previous comparison

3. Within a single topic (x4)

Hypothesis: no difference between topic distributions

1. Between broader categories

topics	n	df	Pillai	approx. F	df_1	df_2	p	partial η^2
comp.sys.* rec.sport.*	815 915	1	0.822	414.240	19	1710	<0.001	0.82

Table 2: 20Newsgroups, comparison of LDA topic distribution vectors between and within topics.

1.	Between broader
	categories

2.	Between
	subcategories

topics	n	df	Pillai	approx. F	df_1	df_2	p	partial η^2
comp.sys.* rec.sport.*	815 915	1	0.822	414.240	19	1710	<0.001	0.82
comp.sys.ibm.pc.hardware comp.sys.mac.hardware	447 368	1	0.264	15.008	19	795	<0.001	0.26
rec.sport.baseball rec.sport.hockey	423 492	1	0.571	62.722	19	895	<0.001	0.57

Table 2: 20Newsgroups, comparison of LDA topic distribution vectors between and within topics.

1.	Between broader
	categories

2.	Between
	subcategories

topics	n	df	Pillai	approx. F	df_1	df_2	p	partial η^2
comp.sys.* rec.sport.*	815 915	1	0.822	414.240	19	1710	<0.001	0.82
comp.sys.ibm.pc.hardware comp.sys.mac.hardware	447 368	1	0.264	15.008	19	795	<0.001	0.26
rec.sport.baseball rec.sport.hockey	423 492	1	0.571	62.722	19	895	<0.001	0.57

Table 2: 20Newsgroups, comparison of LDA topic distribution vectors between and within topics.

- 1. Between broader categories
- 2. Between subcategories
- 3. Within a single topic

topics	n	df	Pillai	approx. F	df_1	df_2	p	partial η^2
comp.sys.* rec.sport.*	815 915	1	0.822	414.240	19	1710	<0.001	0.82
comp.sys.ibm.pc.hardware comp.sys.mac.hardware	447 368	1	0.264	15.008	19	795	<0.001	0.26
rec.sport.baseball rec.sport.hockey	423 492	1	0.571	62.722	19	895	<0.001	0.57
comp.sys.ibm.pc.hardware	219 228	1	0.020	0.460	19	427	0.976	0.02
comp.sys.mac.hardware	198 170	1	0.044	0.840	19	348	0.659	0.04
rec.sport.baseball	206 217	1	0.041	0.903	19	403	0.579	0.04
rec.sport.hockey	247 245	1	0.029	0.738	19	472	0.780	0.03

Table 2: 20Newsgroups, comparison of LDA topic distribution vectors between and within topics.

Clinical corpus (1 of 3)

- Autism Spectrum Disorder (ASD) is a developmental disorder
 - Social communication difficulties, such as problems with topic maintenance
- Sample of 117 ASD and 65 Typically Developing (TD) children, 4 to 15 years old
 - Transcribed dialogues between child and examiner during conversation activities in the ADOS

Clinical corpus (1 of 3)

- Autism Spectrum Disorder (ASD) is a developmental disorder
 - Social communication difficulties, such as problems with topic maintenance
- Sample of 117 ASD and 65 Typically Developing (TD) children, 4 to 15 years old
 - Transcribed dialogues between child and examiner during conversation activities in the ADOS
- Compare topic distributions in two ways, (1) within child speech (2) within examiner speech
 - For child speech, expect topic distribution vectors of ASD group to be different from those of their TD peers
 - For examiner speech, do not expect topic distributions to differ between ASD and TD groups

Clinical corpus (2 of 3)

- Fit two separate LDA models: one containing child speech and one containing examiner speech
- Document = all words said by a speaker during a single ADOS conversation activity
 - Four activity types —> each child-examiner conversation is associated with four, distinct documents

Clinical corpus (2 of 3)

- Fit two separate LDA models: one containing child speech and one containing examiner speech
- Document = all words said by a speaker during a single ADOS conversation activity
 - Four activity types —> each child-examiner conversation is associated with four, distinct documents
- k of 20 used for both models
 - Informed by prior knowledge of type and quantity of questions asked

Clinical corpus (2 of 3)

- Fit two separate LDA models: one containing child speech and one containing examiner speech
- Document = all words said by a speaker during a single ADOS conversation activity
 - Four activity types —> each child-examiner conversation is associated with four, distinct documents
- k of 20 used for both models
 - Informed by prior knowledge of type and quantity of questions asked
 - MANOVA tests
 - Independent variable = diagnosis (ASD, TD)
 - Dependent variables = topic probability values from the document-topic vectors
 - Null hypothesis: multivariate means of ASD and TD groups are equal

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.093	0.941	19	175	0.5334	0.09
Social	dx	1	0.188	2.055	19	169	0.0083	0.19
Friends	dx	1	0.131	1.388	19	175	0.1381	0.13
Loneliness	dx	1	0.135	1.275	19	156	0.207	0.13

Table 3: Child speech, comparison of LDA topic distribution vectors between ASD and TD groups.

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.195	2.235	19	175	0.0035	0.20
Social	dx	1	0.296	3.858	19	174	<0.001	0.30
Friends	dx	1	0.165	1.833	19	176	0.0224	0.17
Loneliness	dx	1	0.151	1.557	19	167	0.0726	0.15

Table 4: Examiner speech, comparison of LDA topic distribution vectors between ASD and TD groups.

1. Child speech

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.093	0.941	19	175	0.5334	0.09
Social	dx	1	0.188	2.055	19	169	0.0083	0.19
Friends	dx	1	0.131	1.388	19	175	0.1381	0.13
Loneliness	dx	1	0.135	1.275	19	156	0.207	0.13

Table 3: Child speech, comparison of LDA topic distribution vectors between ASD and TD groups.

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.195	2.235	19	175	0.0035	0.20
Social	dx	1	0.296	3.858	19	174	<0.001	0.30
Friends	dx	1	0.165	1.833	19	176	0.0224	0.17
Loneliness	dx	1	0.151	1.557	19	167	0.0726	0.15

Table 4: Examiner speech, comparison of LDA topic distribution vectors between ASD and TD groups.

1. Child speech

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.093	0.941	19	175	0.5334	0.09
Social	dx	1	0.188	2.055	19	169	0.0083	0.19
Friends	dx	1	0.131	1.388	19	175	0.1381	0.13
Loneliness	dx	1	0.135	1.275	19	156	0.207	0.13

Table 3: Child speech, comparison of LDA topic distribution vectors between ASD and TD groups.

		df	Pillai	approx. F	df ₁	df_2	p	partial η^2
Emotions	dx	1	0.195	2.235	19	175	0.0035	0.20
Social	dx	1	0.296	3.858	19	174	<0.001	0.30
Friends	dx	1	0.165	1.833	19	176	0.0224	0.17
Loneliness	dx	1	0.151	1.557	19	167	0.0726	0.15

Table 4: Examiner speech, comparison of LDA topic distribution vectors between ASD and TD groups.

1. Child speech

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.093	0.941	19	175	0.5334	0.09
Social	dx	1	0.188	2.055	19	169	0.0083	0.19
Friends	dx	1	0.131	1.388	19	175	0.1381	0.13
Loneliness	dx	1	0.135	1.275	19	156	0.207	0.13

Table 3: Child speech, comparison of LDA topic distribution vectors between ASD and TD groups.

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.195	2.235	19	175	0.0035	0.20
Social	dx	1	0.296	3.858	19	174	<0.001	0.30
Friends	dx	1	0.165	1.833	19	176	0.0224	0.17
Loneliness	dx	1	0.151	1.557	19	167	0.0726	0.15

Table 4: Examiner speech, comparison of LDA topic distribution vectors between ASD and TD groups.

1. Child speech

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.093	0.941	19	175	0.5334	0.09
Social	dx	1	0.188	2.055	19	169	0.0083	0.19
Friends	dx	1	0.131	1.388	19	175	0.1381	0.13
Loneliness	dx	1	0.135	1.275	19	156	0.207	0.13

Table 3: Child speech, comparison of LDA topic distribution vectors between ASD and TD groups.

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.195	2.235	19	175	0.0035	0.20
Social	dx	1	0.296	3.858	19	174	<0.001	0.30
Friends	dx	1	0.165	1.833	19	176	0.0224	0.17
Loneliness	dx	1	0.151	1.557	19	167	0.0726	0.15

Table 4: Examiner speech, comparison of LDA topic distribution vectors between ASD and TD groups.

1. Child speech

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.093	0.941	19	175	0.5334	0.09
Social	dx	1	0.188	2.055	19	169	0.0083	0.19
Friends	dx	1	0.131	1.388	19	175	0.1381	0.13
Loneliness	dx	1	0.135	1.275	19	156	0.207	0.13

Table 3: Child speech, comparison of LDA topic distribution vectors between ASD and TD groups.

		df	Pillai	approx. F	df_1	df_2	p	partial η^2
Emotions	dx	1	0.195	2.235	19	175	0.0035	0.20
Social	dx	1	0.296	3.858	19	174	<0.001	0.30
Friends	dx	1	0.165	1.833	19	176	0.0224	0.17
Loneliness	dx	1	0.151	1.557	19	167	0.0726	0.15

Table 4: Examiner speech, comparison of LDA topic distribution vectors between ASD and TD groups.

Future work

- Approach is not restricted to LDA
 - Method can be extended to any topic modeling algorithm that outputs a topic distribution that can be treated as a composition and satisfies the assumption for MANOVA
- Could include additional independent variables by using multivariate analysis of covariance (MANCOVA)
 - For the clinical corpus, participant age, sex, and IQ

Thank you

A Statistical Approach for Quantifying Group Difference in Topic Distributions Using Clinical Discourse Samples Grace O. Lawley, Peter A. Heeman, Jill K. Dolata, Eric Fombonne, Steven Bedrick

Github repo: https://github.com/gracelawley/lawley-sigdial-2023

I am expecting to graduate by the end of 2023 and am on the job market! Grace Olive Lawley
PhD Candidate, Computer Science & Engineering
Oregon Health & Science University
Portland, Oregon, USA

https://grace.rbind.io

This work was supported in part by the National Institute on Deafness and Other Communication Disorders of the NIH under Awards R01DC012033 (PI: Dr. E. Fombonne) and R01DC015999 (PIs: Dr. S. Bedrick & G. Fergadiotis).