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1. Motivation  

2. Describe a statistical approach for explore and quantify topic 
distributions captured by topic models 

3. Demonstrate its application using LDA and 2 corpora

Outline of this presentation
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• 20Newsgroups —  Usenet posts from different topics 
• Clinical corpus — Language samples of Autistic* and 

Typically Developing (TD) children 

* We are using identity-first language (i.e., Autistic children) here instead of person-first language (i.e., children with Autism) as the 
former is the current preference among many Autistic individuals (Brown, n.d.).
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• Latent Dirichlet Allocation (LDA; Blei et al., 2003) 
• Capture and quantify topic distributions for a collection of language 

samples

• Current methods for evaluating topic distributions 
• Intrinsic methods, such as within-topic coherence 
• To our knowledge, shortage of methods for statistical comparisons



Latent Dirichlet Allocation (LDA)
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• LDA is a unsupervised, generative probabilistic model that is used on a 
corpus of text documents to model each document as a finite mixture 
over  topics  

• Each document 
• Treated as a bag-of-words 
• Represented as a set of words and associated frequencies

k



• Given  documents and an integer , LDA produces 

•  document-topic matrix ( ) 

•  topic-word matrix ( ) — where  is total number of unique 
words across entire corpus

M k

M × k θ

k × V β V
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θ1,1 θ1,2 … θ1,k

θ2,1 θ2,2 … θ2,k
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• Document-topic matrix,  
• Each row = single document 
• Each column = single topic 

• The elements in  are the estimated 
proportion of words in a document that 
were generated by a given topic

θ

θ

• To our knowledge, a statistical method for comparing topic distribution 
vectors between groups of documents has not yet been proposed

• Feature vectors for document classification or clustering 
• Proxy for document content for qualitative analyses
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• One reason for this is due to certain numerical properties of topic 
distribution vectors which make them unsuitable for many parametric 
statistical methods 

• Each component is bounded between 0 and 1 
• All components sum to 1
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• Realized that topic distribution vectors meet the definition of 
compositional data since components are proportions and all sum to 1 
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together represent parts of some whole 
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• Isometric logratio (ILR) transformation (Egozcue et al., 2003) 
• ILR:  

• Maps compositional data from its original sample space ( -part simplex) into real 
space (  Euclidean space) with all metric properties preserved 

• After the transformation, we are able to use classical multivariate analysis tools

SD → ℝD−1

D
D − 1
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• Multivariate Analysis of Means (MANOVA) 
• Compares multivariate sample means 
• Requires a number of statistical assumptions to be met before using 

(described in more detail in the paper) 
• Examines effect of one discrete, independent variable on multiple 

dependent variables 
• Independent variable —> topic label // diagnostic group 
• Dependent variables —> topic distribution probabilities in the 

document-topic distribution matrix created by LDA,  
where 

θi,1, θi,2, …, θi,k−1
i = 1,2,…, M
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• Dependent variables —> topic distribution probabilities in the 

document-topic distribution matrix created by LDA,  
where 

θi,1, θi,2, …, θi,k−1
i = 1,2,…, M

One dimension is 
removed during the 
ILR transformation

• After MANOVA, calculate effect size  
• Partial eta-squared ( ) 
• What proportion of the variance of the linear combination of topics can 

be explained by the independent variable

η2
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newsgroups 

• Widely used for text classification and analysis

20NewsGroups (1 of 3)
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users could post 
messages about a given 
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• Widely used for text classification and analysis

20NewsGroups (1 of 3)
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*Usenet was an early 
internet-based network of 
hierarchally-organized 
discussion groups where 
users could post 
messages about a given 
topic.

• Fit a single LDA model with a  value of 20 
• Transformed topic distribution vectors using ILR transformation 
• Checked MANOVA assumptions (detailed in paper) 
• Performed 7 MANOVA tests 

k

• Used documents from four topics 
• comp.sys.ibm.pc.hardware 
• comp.sys.mac.hardware 
• rec.sport.baseball 
• rec.sport.hockey
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comp.sys.ibm.pc.hardware

comp.sys.*

rec.sport.*

comp.sys.mac.hardware

rec.sport.baseball

rec.sport.hockey

1. Between broader categories (x1) 

Hypothesis: topic distributions will be very different

2. Between subcategories (x2) 

Hypothesis: topic distributions will also be different, but 
not as different as previous comparison

3. Within a single topic (x4) 

Hypothesis: no difference between topic distributions

comp.sys.ibm.pc.hardware1

comp.sys.ibm.pc.hardware2
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1. Between broader 
categories

2. Between 
subcategories

3. Within a single 
topic



• Autism Spectrum Disorder (ASD) is a developmental disorder 
• Social communication difficulties, such as problems with topic 

maintenance 
• Sample of 117 ASD and 65 Typically Developing (TD) children, 4 to 15 

years old 
• Transcribed dialogues between child and examiner during 

conversation activities in the ADOS

Clinical corpus (1 of 3)
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• Compare topic distributions in two ways, (1) within child speech (2) within 
examiner speech  

• For child speech, expect topic distribution vectors of ASD group to be 
different from those of their TD peers 

• For examiner speech, do not expect topic distributions to differ 
between ASD and TD groups 
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associated with four, distinct documents 
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• Fit two separate LDA models: one containing child speech and one 
containing examiner speech 

• Document = all words said by a speaker during a single ADOS 
conversation activity 

• Four activity types —> each child-examiner conversation is 
associated with four, distinct documents 

• MANOVA tests 
• Independent variable = diagnosis (ASD, TD) 
• Dependent variables = topic probability values from the 

document-topic vectors 
• Null hypothesis: multivariate means of ASD and TD groups are 

equal

•  of 20 used for both models 
• Informed by prior knowledge of type and quantity of questions 

asked

k



Clinical corpus — Results

16



Clinical corpus — Results

16

1. Child 
speech

2. Examiner 
speech



Clinical corpus — Results

16

1. Child 
speech

2. Examiner 
speech



Clinical corpus — Results

16

1. Child 
speech

2. Examiner 
speech



Clinical corpus — Results

16

1. Child 
speech

2. Examiner 
speech



Clinical corpus — Results

16

1. Child 
speech

2. Examiner 
speech



• Approach is not restricted to LDA 
• Method can be extended to any topic modeling algorithm that 

outputs a topic distribution that can be treated as a composition 
and satisfies the assumption for MANOVA 

• Could include additional independent variables by using multivariate 
analysis of covariance (MANCOVA) 

• For the clinical corpus, participant age, sex, and IQ

Future work
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Github repo: https://github.com/gracelawley/lawley-sigdial-2023
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