Slot Induction via Pre-trained Language Model Probing and Multi-level Contrastive Learning

Hoang Nguyen¹, Chenwei Zhang², Ye Liu³, Philip S. Yu¹

¹ University of Illinois at Chicago
² Amazon
³ Salesforce Research

SIGDIAL 2023

Overview

- Background
- Motivation
- Framework
- Evaluation
- Conclusion

BACKGROUND

[1] Goo et al., Slot-gated modeling for joint slot filling and intent prediction. ACL 2018

Background

Utterance

Play me a top-ten song by phil ochs on groove shark **Knowledge** Slot Labels: PERSON, PLAYLIST_NAME Phil ochs: PERSON, groove shark: Slot PLAYLIST NAME

Slot Filling^[1]

(Closed world)

Multi-task Learning^[1] (Closed world)

Utterance

[1] Haihong et al., A novel bi-directional interrelated model for joint intent detection and slot fillin. ACL 2019.

Zero-shot Learning^[1] (Closed world)

Utterance

[1] Glass et al., Robust retrieval augmented generation for zero-shot slot filling. EMNLP 2021.

Slot Induction

Definition: Identifying phrases containing token-level slot labels

Assumption:

• Non-existence of token-level slot labels during training and testing

Comparison with Phrasal Segmentation:

- Slot phrases can be complex and not restricted to noun phrases
- Utterances and intents are the only sources of information

Sample Slot Phrases

Find movie times for **close by** movies what are the most expensive first class tickets between atlanta and dallas

Slot Induction

Definition: Identifying phrases containing token-level slot labels

Assumption:

• Non-existence of token-level slot labels during training and testing

Comparison with Phrasal Segmentation:

- Slot phrases can be complex and not restricted to noun phrases
- Utterances and intents are the only sources of information

Requiring balance of semantic knowledge and task-specific knowledge for inference

Slot Induction Evaluation

Assumption:

- Adoption of Break-Tie Mechanisms
- Allowing for direct comparison between Phrasal Segmentation and Slot Filling methods

Golden Metric: H-Mean

• Balance of correct Break, Tie predictions

MOTIVATION

MOTIVATION Utterance

Slot Induction

FRAMEWORK

• Segment-level Contrastive Learning (SegCL):

- Refining semantic segments obtained from UPL via overall sentence semantic representation
- Sentence-level Contrastive Learning (SentCL):
 - Refining semantic segments obtained from UPL by exploiting samples with similar intent

- Extracting coherent semantic segments captured by PLM
- <u>Perturbed Masking</u>^[1]: Iteratively deciding the split positions of utterances via Impact Matrix until token level is reached
- **Impact Matrix:** measuring impact score of every possible token pairs of utterances.

- Extracting coherent semantic segments captured by PLM
- <u>Perturbed Masking</u>: Iteratively deciding the split positions of utterances via Impact Matrix until token level is reached
- Impact Matrix: measuring impact score of every possible token pairs of utterances.

- Extracting coherent semantic segments captured by PLM 0
- Perturbed Masking: Iteratively deciding the split positions of utterances via Impact Matrix until 0 token level is reached
- **Impact Matrix:** measuring impact score of every possible token pairs of utterances. 0

- Extracting coherent semantic segments captured by PLM 0
- Perturbed Masking: Iteratively deciding the split positions of utterances via Impact Matrix until 0 token level is reached
- **Impact Matrix:** measuring impact score of every possible token pairs of utterances. 0

- Extracting coherent semantic segments captured by PLM 0
- Perturbed Masking: Iteratively deciding the split positions of utterances via Impact Matrix until 0 token level is reached
- **Impact Matrix:** measuring impact score of every possible token pairs of utterances. 0

• Segment-level Contrastive Learning (SegCL):

- Enhancing quality of PLM segments in an unsupervised way
- Incorporating overall semantic representation from special [CLS] token as guidance
 - Anchor: Overall semantic representation
 - Positive: PLM's Segment representation of input utterance
 - <u>Negative</u>: Random segment representation of input utterance

• Sentence-level Contrastive Learning (SentCL):

- Enhancing quality of semantic segments with available sentence-level intents
- Encouraging semantic alignment between samples of similar intents
 - Anchor: PLM Segment representation of input utterance
 - Positive: PLM Segment representation of samples from similar intents
 - Negative: PLM Segment representation of samples from different intents

EVALUATION

DATASET

	SNIPS_P1	SNIPS_P2	ATIS_P1	ATIS_P2
# Intents	5	2	14	7
# Slots	31	16	68	63
# Train Samples	9356		3811	
# Validation Samples	500	-	414	-
# Test Samples	501	4127	750	895
Avg Train Sent Length	8.65	-	11.67	
Avg Valid Sent Length	8.72		11.82	_
Avg Test Sent Length	8.71	9.87	10.68	8.92

Table 1: Details of SNIPS and ATIS datasets.

• Evaluation Task 1: Slot Induction (P1)

- **Objective:** Slot Induction Capability
- Metric: H-Mean of Break-Tie mechanism

Evaluation Task 2: Generalization towards Emerging Intents (P2)

- **Objective:** Generalization capability of SI refinement method
- <u>Metric:</u> Slot Filling metrics (Precision, Recall, F1)

EVALUATION TASK 1

Table 2: Experimental performance result on SNIPS dataset over 3 runs (**H-Mean** is considered the golden criteria for SI (Section 3)). ¶ denotes models that do not require random initializations.

	Model	Prior Knowledge	Break Tie			H-Mean			
			B-P	B-R	B-F1	T-P	T-R	T-F1	
	Joint BERT FT	Slot + Intent	96.91 ± 0.17	96.62 ± 0.69	96.76 ± 0.26	73.55 ± 0.38	73.39 ± 1.03	73.47 ± 0.38	83.52 ± 0.16
Upper Bound	FlairNLP ¶	POS & NER	80.04	62.81	70.38	48.25	63.31	54.77	61.60
	SpaCy ¶	POS	75.73	50.29	60.45	41.71	62.97	50.18	54.84
	DP-LB	8 <u>-</u> 2	59.68	34.27	43.54	21.69	38.53	27.76	33.90
1.000	DP-RB ¶	111 127 12104	66.53	52.56	58.73	33.97	52.24	41.17	48.40
Comparable	AutoPhrase	External KB	65.51 ± 0.23	57.16 ± 2.59	61.05 ± 1.15	33.39 ± 0.74	36.62 ± 1.67	34.93 ± 1.50	44.43 ± 1.64
	UCPhrase	PLM	42.25 ± 4.90	20.26 ± 2.71	27.39 ± 1.95	36.06 ± 2.42	$\textbf{73.53} \pm \textbf{3.33}$	$\textbf{48.39} \pm \textbf{2.91}$	34.98 ± 2.35
	USSI	PLM	83.21	62.12	71.14	33.96	49.93	40.42	51.55
	Ours (w/o CL) ¶	PLM	75.36	66.70	70.76	38.51	45.81	41.84	52.59
	Ours (w/o SentCL)	PLM	76.09 ± 0.73	66.43 ± 0.29	70.94 ± 0.49	39.15 ± 0.60	47.9 ± 0.91	43.09 ± 0.73	53.61 ± 0.71
	Ours (full)	PLM + Intent	76.87 ± 0.25	$\textbf{67.77} \pm \textbf{0.26}$	$\textbf{72.00} \pm \textbf{0.24}$	40.39 ± 0.16	48.49 ± 0.19	44.07 ± 0.04	$\textbf{54.68} \pm \textbf{0.08}$

- **Upper Bound:** requiring token-level annotations during training/ pre-training
- Comparable Method: no token-level annotations are involved during training.
- **Ours** bridges the gap with Upper Bound Methods in terms of **H-Mean**
- Ours exceeds the Comparable Methods in terms of H-Mean

EVALUATION TASK 1

Table 3: Experimental performance result on ATIS dataset over 3 runs (**H-Mean** is considered the golden criteria for SI (Section 3)). ¶ denotes models that do not require random initializations.

	Model	Prior Knowledge		Break		Tie		H-Mean	
2			B-P	B-R	B-F1	T-P	T-R	T-F1	
	Joint BERT FT	Slot + Intent	98.49 ± 0.24	99.33 ± 0.08	98.91 ± 0.09	59.07 ± 0.36	58.27 ± 0.89	58.67 ± 0.63	73.65 ± 0.54
Upper Bound	FlairNLP ¶	POS & NER	95.44	77.90	85.78	41.34	61.91	49.58	62.84
	SpaCy ¶	POS	94.45	69.64	80.17	35.33	61.17	44.79	57.47
	DP-LB	2 	80.80	36.38	50.17	12.32	38.51	18.67	27.21
	DP-RB ¶	-	84.24	66.84	74.54	14.81	30.52	19.94	31.46
Comparable	AutoPhrase	External KB	75.96 ± 0.04	40.06 ± 0.28	52.46 ± 0.18	19.75 ± 0.21	49.33 ± 0.38	$\textbf{28.20} \pm \textbf{0.28}$	36.68 ± 0.21
	UCPhrase	PLM	47.25 ± 0.04	17.27 ± 0.72	25.29 ± 0.78	17.36 ± 0.16	$\textbf{58.21} \pm \textbf{0.68}$	26.75 ± 0.11	26.00 ± 0.47
	USSI ¶	PLM	95.06	56.36	70.77	14.78	45.22	22.28	33.89
	Ours (w/o CL)	PLM	86.40	61.53	71.87	18.23	35.27	24.04	36.03
	Ours (w/o SentCL)	PLM	87.29 ± 0.15	64.21 ± 0.27	73.99 ± 0.13	20.09 ± 0.08	35.86 ± 0.35	25.75 ± 0.08	38.20 ± 0.08
	Ours (full)	PLM + Intent	87.80 ± 0.27	63.27 ± 0.67	73.54 ± 0.36	$\textbf{20.53} \pm \textbf{0.14}$	37.89 ± 0.99	26.63 ± 0.26	$\textbf{39.10} \pm \textbf{0.24}$

- **Ours** remains competitive among Comparable methods
- The gap between **Comparable** and **Upper Bound** methods are more significant

ABLATION STUDY

Contribution of Multi-level CL

	SNIPS	ATIS
Ours (w/o CL)	52.59	36.03
+ SegCL	53.61 ± 0.71	38.20 ± 0.08
+ SentCL (w/o aug)	53.44 ± 0.22	37.59 ± 0.81
+ SentCL (w aug)	54.23 ± 0.10	38.12 ± 0.36
Ours (full)	$\textbf{54.68} \pm \textbf{0.08}$	$\textbf{39.10} \pm \textbf{0.24}$

Segment-level Contrastive Learning is effective

ABLATION STUDY

Contribution of Multi-level CL

-0.3002 -0.278 -0.250

(c) Sentence-level Supervised Positive-Anchor Pair (d) Sentence-level Supervised Negative-Anchor Pair

Sentence-level Contrastive Learning is effective

EVALUATION TASK 2

Figure 6: Slot Value Representation Visualization of the raw original pre-trained BERT and raw Refined BERT via SI on sample slot types from training set SNIPS_P1 ((a), (b)) and testing set SNIPS_P2 ((c), (d)). Blue and Red denotes slot values from randomly sampled ground truth slot types.

Table 5: Evaluation of SF task over 3 runs on Emerging Intents in SNIPS_P2 and ATIS_P2 datasets.

	SNIPS_P2				
	S-P	S-R	S-F1		
Original BERT	14.11 ± 0.47	17.78 ± 0.82	15.73 ± 0.62		
Refined BERT	$\textbf{15.08} \pm \textbf{0.48}$	$\textbf{19.61} \pm \textbf{0.23}$	$\textbf{17.05} \pm \textbf{0.38}$		
		ATIS_P2			
Original BERT	66.67 ± 0.82	63.35 ± 1.35	64.96 ± 0.74		
Refined BERT	$\textbf{70.12} \pm \textbf{0.85}$	$\textbf{63.64} \pm \textbf{0.48}$	66.72 ± 0.66		

SI Refinement provides effective initializations for token-level slot when generalized towards emerging intents

CONCLUSION

CONCLUSION

- Token-level Slot Induction via
 - <u>Unsupervised Pre-trained Language Model Probing</u>: inherent semantic knowledge extraction from PLM
 - **Multi-level Contrastive Learning:** semantic segment refinement
- Capability of improved initialization for token-level slot label tasks when generalized towards emerging intents

Thank you for your attendance Questions?

Code + Data: https://github.com/nhhoang96/MultiCL_Slot_Induction