Applying Item Response Theory to Task-oriented Dialogue Systems

for Accurately Determining User's Task Success Ability

Ryu Hirai, Ao Guo, Ryuichiro Higashinaka (Graduate School of Informatics, Nagoya University)

Overview

Background

Task-oriented dialogue systems are widely used in our daily lives

Problem

 Due to some users having limited knowledge about the system, not all users can fully accomplish their tasks

Goal

 Construct a system that can <u>estimate the user's task success</u> ability so that the system can adapt to that ability

Proposed Method

- Estimate user's task success ability by <u>item response theory</u> (IRT)
 - Item response theory is a measurement theory that quantifies examinees' abilities on tests and commonly used in educational fields

Experiment

- We collected dialogues between the MultiWOZ-based systems and users and predicted the probability of a correct answer to each slot
- The proposed method <u>significantly outperformed baselines</u>

Proposed Method

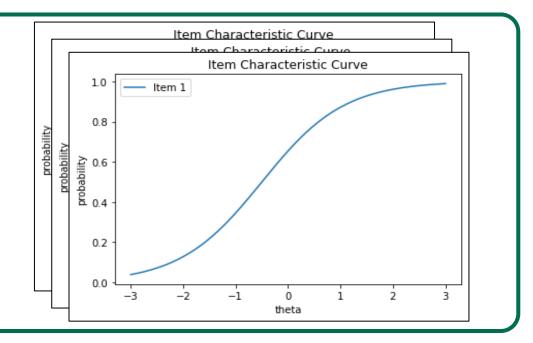
Dialogue Collection

 Present dialogue goals to users and engage them in dialogue

Dialogue goal					
	Domain	Slot	Value		
Inform	Restaurant	Area	East		
Inform	form Restaurant		Pizza		

2 Judging Correctness of Each Slots

- We regard each dialogue as a single test
- We consider whether each slot is filled in correctly as a problem
- We compare the dialogue goal and the belief state to judge the correctness of each slot


Belief state at the end of dialogue				Dialogue goal		
Domain	Slot	Value			Domain	
Restaurant	Area	West	Compare	Inform	Restaurant	
	Food	Pizza		Inform	Restaurant	
	Price					

izza	Inform	Restaurant	Food	Pizza	corre	ect
					1	
Labels denoting if	each s	lot was co	rrectly	/ filled	or no	ot

3) Estimating Item Characteristics

 We use IRT to estimate item characteristics by means of marginal maximum likelihood estimation

Value Label

incorrect

Slot

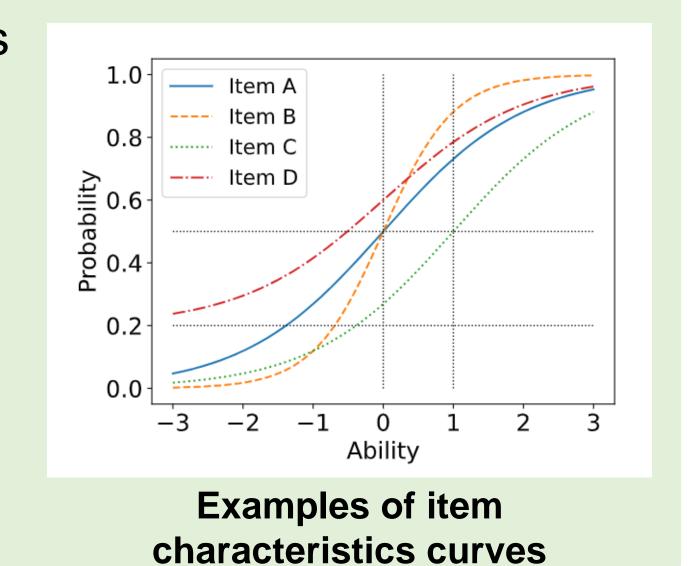
Area East

Dialogue with New Use

- New user engages in a dialogue for a given dialogue goal
- Judge whether each slot is correctly filled

er
Dialogue goal with correct/incorrect
labels for slots

	Domain	Slot	Value	
Inform	Hotel	Area	North	correct
Inform	Hotel	Price	Moderate	incorrect



5) Estimating Users' Task Success Abilities

We estimate the task success ability by using item characteristics by expected a posteriori estimation

Item Response Theory

- We can estimate both users' abilities and item characteristics (discrimination, difficulty and guessing)
 - The relationship between the examinee's abilities θ and the probabilities of correct answers to questions prob is calculated for each question

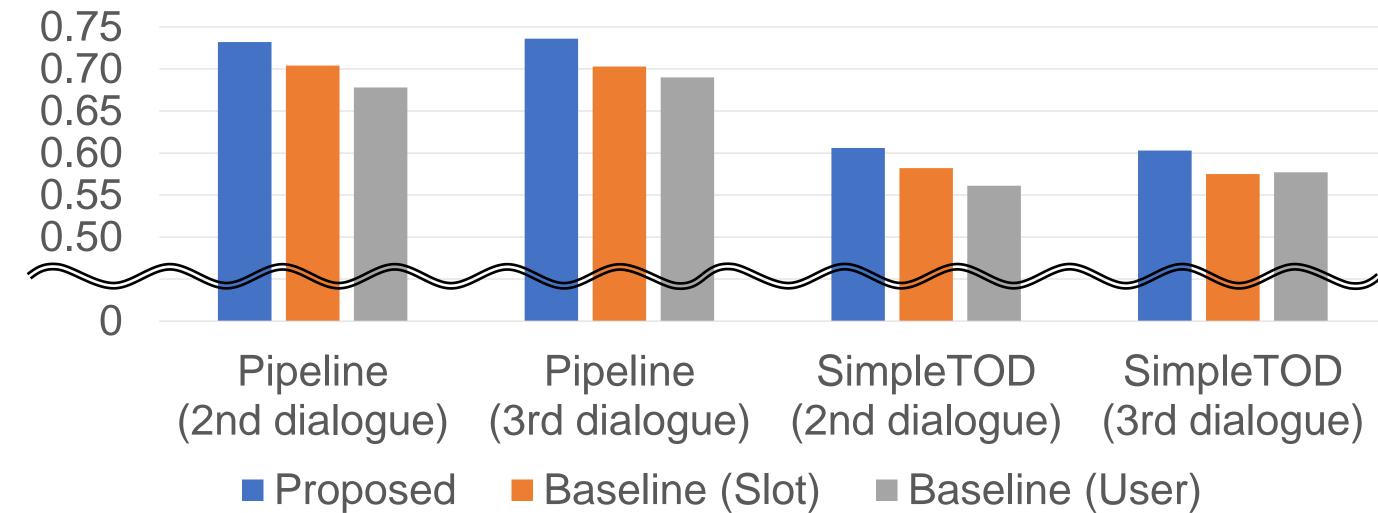
Experiment

Experimental Procedure

- We collected dialogues from 477 users via crowdsourcing
 - > We built two systems using the **MultiWOZ 2.1** dataset [Eric+ 2019]
 - Pipeline [Zhang+ 2020] and SimpleTOD [Hosseini-Asl+ 2020]
 - Each user engaged in three consecutive dialogues with Pipeline or SimpleTOD with randomly generated dialogue goals
- We predicted the probabilities of correct answers
 - \triangleright 5-fold cross validation (train: test = 4: 1)
 - Estimate item characteristics from the train folds
 - Estimate user's task success abilities from the first dialogue of the test fold
 - Predict the probabilities of correct answers to each slot in the second and third dialogue of the test fold

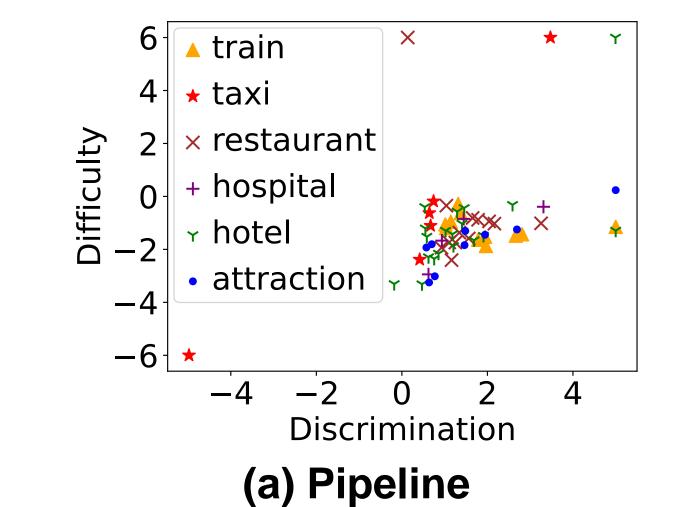
Baselines

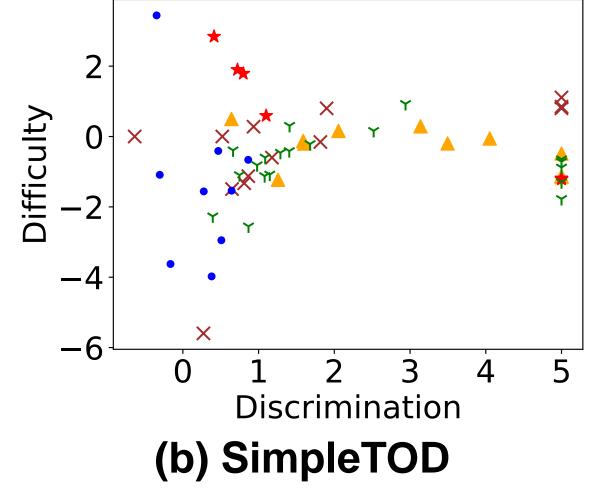
- Baseline (Slot) uses the average probability of a correct answer for a target slot as the probability of a correct answer for the slot
- > Baseline (User) uses the average probability of a correct answer from the target user in the test data's first dialogue as the probability of a correct answer for the slot


Evaluation Metric

- Accuracy of estimating the probabilities of correct answers
 - > prob: probability of a correct answer to each slot
 - $\geq ans \in \{0, 1\}$: actual correctness of the slot

$$acc = \begin{cases} prob, & (ans = 1) \\ 1 - prob, & (ans = 0) \end{cases}$$


Result


The proposed method achieved a significantly higher estimation accuracy than the baselines

Accuracy of estimating probabilities of correct answers

- Different slots have different item characteristics
- We can create appropriate tests by selecting slots with high discrimination

