Controllable Generation of Dialogue Acts for Dialogue Systems via Few-Shot Response Generation and Ranking

Angela Ramirez, Kartik Aggarwal, Juraj Juraska, Utkarsh Garg and Marilyn A. Walker

University of California Santa Cruz Contact: aramir62@ucsc.edu, kartik@ucsc.edu, mawalker@ucsc.edu

Motivation: NLG for Spoken Dialogue Systems

- **Dialogue Acts:** You need to control the dialogue act.
- **Semantic Attributes:** You need to control the expression of the Semantic Attributes. System has a specific thing to convey, either because dialogue is task oriented, or it is based on some kind of knowledge.
- **Crowdsourced Datasets:** Getting large datasets can be expensive. May not exhibit the properties you want. Crowdsourced training data can have quality issues.
- **Could Prompt-Based Learning be a solution to these challenges?**
- Can we control both Dialogue Acts and Semantic Attributes with few-shot learning?

Datasets and Models

- Viggo, 9 dialogue acts associated with the video game domain
- RNNLG Laptop and TV domain, where they consist of 13 dialogue acts 2.
- Models: Jurassic Jumbo-1, GPT-3, GPT-NEO 1B, 3.

Examples of Viggo Dialogue Acts

Example/ MR **D-Act**

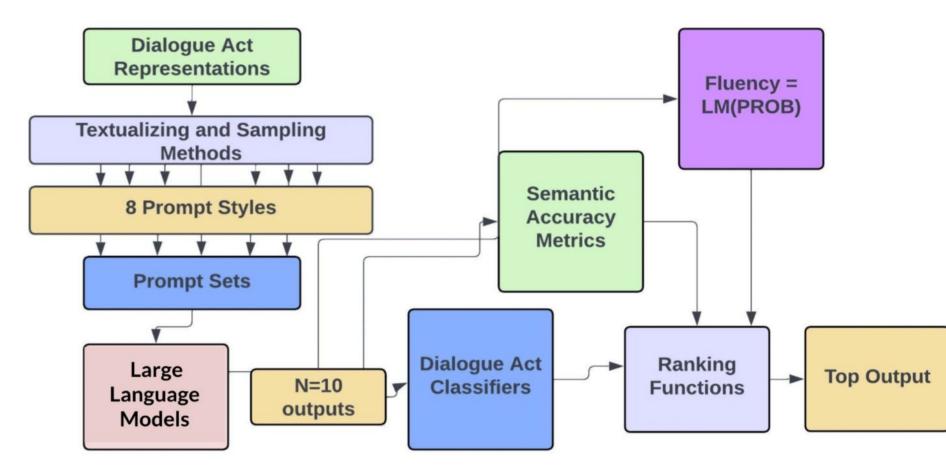
Results

- Can we achieve a high level of dialogue act control with PBL? • DAC column
- Can we achieve high semantic accuracy with PBL?
 - SACC column
 - Not as high as SOTA, but surprisingly good given only 10 examples
- Which prompt format works best?
- How many samples are optimal? \bullet
 - All the TST formats, giving 10 samples slightly better than 5
 - Definitional has promise, maybe needs tweaking
- Should samples always be of the same dialogue act? • yes
- How does it compare to few-shot fine tuning?
 - Same data 5-per much worse
 - With 100 per DA, fine-tuning has significantly lower DAC but better SACC Ο

SACC ID PERF DAC N **Few-Shot Fine-Tuning Experiments** 38.88 85.71 54.44 45 FTune 5-per 79.72 FTune 25-per 225 62.22 92.19 FTune 50-per 79.44 450 71.94 96.43

Suggest	Alright! Have you played any adventure games by Remedy Entertainment, like Alan Wake?
MR	D-Act = suggest , name = Alan Wake, developer = Remedy Entertainment, genres=adventure
Confirm	Oh, do you mean the 2017 game from Ninja Theory , Hellblade: Senua's Sacrifice?
MR	D-Act = confirm , name = Hellblade: Senua's Sacrifice, release_year = 2017, developer = Ninja Theory
Give Opinion	I think that SpellForce 3 is one of the worst games I've ever played. Trying to combine the real-time strategy and role-playing genres just doesn't work, and the bird's eye view makes it near impossible to play.
MR	D-Act = give_opinion , name = SpellForce 3, rating =poor. genres = (real-time strategy, role-playing), player_perspective =bird view

Experimental Design



NLG Conditioned on DAs and Semantic Attributes

We want to generate an utterance y, conditioned on an input x, composed of DA

FTune 100-per		78.61	97.74	80.56					
Prompt-Based In-Context Per-DA Experiments									
5-per DA		60.0	83.6	92.0					
2-per DA		61.0	83.2	91.4					
2-per DA + Def		64.0	84.0	98.6					
Prompt-Based In-Context Specific-DA Experiments									
TST Vanilla	10	85.6	94.7	100					
TST Dialogue		83.9	94.2	100					
TST Paraphrase		83.9	94.2	100					
Pseudo		75.8	94.2	100					
S2S		70.6	86.5	100					
Definition (each)		76.9	91.2	100					
Definition (top)		82.2	93.5	100					
Paraphrase		77.8	92.1	100					
Dialogic		77.2	91.5	100					
TST Vanilla		80.6	92.6	98.7					
TST Dialogue		83.9	93.9	100					
TST Paraphrase		80.2	92.6	99.7					
Pseudo		52.2	82.6	88.6					
S2S	5	66.7	83.5	98.7					
Definition (each)	5	80.0	92.7	99.4					
Definition (top)		77.2	91.3	100					
Paraphrase		70.8	89.7	100					
Dialogic		66.9	88.3	99.1					
TST Vanilla		69.2	88.2	92.0					
TST Dialogue		69.2	88.2	93.3					
TST Paraphrase		72.2	89.8	93.6					
Definition		63.9	85.3	98.3					
Paraphrase		41.9	75.1	83.8					
Dialogic		38.8	71.8	82.3					

D and attribute values a.

p(y|d, a) = p(d|y, a) * p(a|y) * p(y)

- p(d | y, a) is the **DA probability** given the generated utterance y and the semantic attributes a
- p(a|y) is the **semantic accuracy**, which can be measured in different ways
- p(y) is the unconditional probability of y, which is normally taken to be a measure of **fluency** of the output y.

Ranking Functions

Below are the 6 ranking functions we utilize where DAC is dialogue act accuracy, SACC is semantic accuracy, P(S) is fluency where we used language model probability, pBBLEU is pseudo beyond BLEU, and pBLEU is pseudo BLEU.

- RF1 combines dialogue act accuracy, semantic accuracy, and fluency
- Noticed that pBLEU may pick up hallucinations. Added RF2
- **RF2DA: FILTER at each step**
- RF3, replace SACC with Beyond BLEU
- RF4: use pBBLEU as a baseline

RF1	DAC*SACC*P(S)		
RF2	DAC*SACC*pBBLEU*P(S)		
RF2da	DAC SACC pBLEU P(S)		
RF3	DAC*pBBLEU*P(S)		
RF4	pBBLEU		
RF5	pBLEU		

Process of Converting Meaning Representations to use in

- Which ranking function works best?
 - Weighting by DAC works better not just for DA but also for SACC
- Do we need domain specific ranking functions? yes
- Does it generalize across domains?
 - Yes
 - Better results for TV
 - Comparable for Laptop

RF	Terms	PERF	SACC	DAC	BLEU			
ViGGO								
RF1	DAC, SACC, P(S)	79.17	91.82	99.72	38.41			
RF2	DAC, SACC, pBLEU, P(S)	78.33	91.72	99.00	38.67			
RF2 _{DA}	DAC, SACC, pBLEU, P(S)	85.56	94.73	100.00	40.08			
RF3	DAC, pBBLEU, P(S)	62.78	84.38	100.00	49.87			
RF4	pBBLEU	60.55	91.63	77.78	42.82			
RF5	pBLEU	44.22	81.66	75.28	40.08			
TV								
RF1	DAC, SACC, P(S)	85.40	96.86	100.00	72.55			
RF2	DAC, SACC, pBLEU, P(S)	88.19	97.43	100.00	72.55			
RF2 _{DA}	DAC, SACC, pBLEU, P(S)	98.85	99.76	100.00	60.51			
RF3	DAC, pBBLEU, P(S)	73.96	93.87	100.00	72.89			
RF4	pBBLEU	90.14	97.88	99.71	60.51			
RF5	pBLEU	63.45	91.50	99.57	66.71			
	L	aptop						
RF1	DAC, SACC, P(S)	49.25	86.70	100.00	61.24			
RF2	DAC, SACC, pBLEU, P(S)	57.29	89.47	100.00	59.39			
RF2 _{DA}	DAC, SACC, pBLEU, P(S)	80.95	95.90	100.00	61.36			
RF3	DAC, pBBLEU, P(S)	35.55	80.41	100.00	45.03			
RF4	pBBLEU	61.79	90.97	98.88	36.32			
RF5	pBLEU	42.38	84.25	97.77	61.36			

Prompt for LLM Meaning Representation Pseudo Ref suggest(The Legend of Zelda: name[The Legend of Zelda: Reloaded, right?" Ocarina of Time], Ocarina of Time 1998 release_year[1998], Nintendo EAD E (for developer[Nintendo EAD], Everyone) esrb[E (for Everyone)], action-adventure, genres[action-adventure, puzzle, role-playing bird puzzle, role-playing], player_perspective[bird view, view, third person third person]

TST Prompt Here is a text: "Worms: Reloaded Steam". Here is a rewrite of the text, which is a suggest dialogue act: "I bet you like it when you can play games on Steam, like Worms: Here is a text: "The Legend of Zelda: Ocarina of Time 1998 Nintendo EAD E (for Everyone) action-adventure, puzzle, role-playing bird view, third person". Here is a rewrite of the text, which is a suggest dialogue act:

Conclusion

- 1. Few Shot prompt-based tuning with ranking performs better than a fine-tuned model
- 2. Achieved perfect dialogue act accuracy (DAC) and near perfect semantic accuracy (SACC)
- Method is generalizable to different domains
- Future work may be needed to evaluate if certain prompts such as the definitional style can be readjusted to achieve higher scores, and whether different fine-tuned models can outperform prompt-based learning

