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→ We probe LLMs for discourse knowledge
→ We go beyond single-word predictions



• Think of a continuation for the following sentence. Remember the first thing that

comes to your mind.

A little task
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Paul admired Isabel because she was the top student in all subjects. 

Paul admired Isabel because she was a very good swimmer. 

Paul admired Isabel because she played the piano so well. 

Paul admired Isabel because she gave such a good talk.
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Paul admired Isabel because she was a very good swimmer. 

Paul admired Isabel because she played the piano so well. 

Paul admired Isabel because she gave such a good talk.

→ admire triggers an explanation

→ admire comes with a strong next-mention-bias 
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Implicit Causality (IC)

• Interpersonal verbs that favor one argument for coreference → IC Coreference bias 

Paul admired Isabel because she was the top student in all subjects. 

IC

Paul fascinated Isabel because he found a solution immediately.

IC
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• Focus on the next word prediction
• For example: Upadhye et al., 2020; Davis and van Schijndel, 

2020; Kementchedjhieva et al., 2021; Zarrieß et al., 2022
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• Focus on the next word prediction
• For example: Upadhye et al., 2020; Davis and van Schijndel, 

2020; Kementchedjhieva et al., 2021; Zarrieß et al., 2022

• Studies suggest that LLMs lack congruence 
with human IC bias, indicating difficulties in 
discourse understanding

Paul admired Isabel because [MASK] 

IC?
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Vincent inspired Clara because he had so 
many talents.

Pia hated Malte because he was constantly 
annoying her.

Isabel admired Paul because he was such a 
good swimmer. 

Björn disappointed Celina because she 
expected more from him.

Human-produced continuations 
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Human-produced continuations Model-generated continuations 

IC bias-incongruent, yet still coherent 
IC bias-congruent, 
but not coherent
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Experiment – Set-Up  

Clara inspired Vincent because...

Clara inspired Vincent by her innovative lecture because...

• German Data from Bott and Solstad, 2021

• Conditions
• 1) "Standard" prompt constructions 
• 2) Prompts extended with adverbial 

modifications

• Models: GPT-2 & mGPT

• Evaluation
• Automatic Measures
• Human Evaluation /199
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Nicolas delighted Maria because

he had brought her a gift. 
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Naturalness The explanation is natural and sounds like it was written by a German native speaker. 

he had brought her a gift. 

Nicolas delighted Maria because

Coherence The explanation is meaningful, there is a logical connection between the beginning of 
the sentence and its continuation. 

Informativity
The explanation is surprising, as a result the sentence as a whole could be an 
interesting start to a story. 
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• Human continuations excel in naturalness and 
coherence

• Informativeness ratings don't strongly favor 
human continuations 
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• Differences between naturalness and 

coherence:

→ High naturalness medians indicate 

fluency

→ Low coherence medians indicate lack 

of logical consistency



Why do the models struggle especially with generating coherent continuations?
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• Information Theory: low probability 

units = more informative("surprising")

• Uniform Information Density (UID): 

speakers prefer to distribute 

information uniformly across their 

utterances (Levy and Florian Jaeger, 

2007; Jaeger, 2010)

• Uniform distribution of information is 

linked to higher linguistic 

acceptability (e.g., Meister et al., 2021)
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speakers prefer to distribute 

information uniformly across their 

utterances (Levy and Florian Jaeger, 

2007; Jaeger, 2010)

• Uniform distribution of information is 

linked to higher linguistic 

acceptability (e.g., Meister et al., 2021)

Clara inspired Vincent because...

• Standard IC prompts are brief and contain only minimal information

A short excursion to Information Density  

We posit posit that LLMs encounter difficulties in producing 

continuations that are informative and still sensible

• Modified IC prompts inherently carry more more information

Clara inspired Vincent by her innovative lecture because...

→ less informative continuations are required 

Extended IC prompts expected to result in higher quality 

continuations due to reduced burden on LLMs

→ continuations require more information to maintain a uniform 

distribution of information 
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• Modified prompts do lead to continuations that 
are less informative
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• Modified prompts do lead to continuations that 
are less informative

• But: modified prompts don't consistently lead to 
better evaluations
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Relation of bias congruency and continuation quality
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Experiment – Results III

Relation of bias congruency and continuation quality

• Modifying IC prompts affects IC bias capture, depending on decoding strategy

• Typical Sampling: most bias-congruent continuations, but not always better 

evaluation scores

• → Bias-congruent continuations don't always equate to better quality

Completion Sensitivity
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• No significant correlation between ROUGE-L, 

BERTScore, and human ratings

• BLEU scores weakly correlate with coherence

• A negative (hardly significant) relationship between

BLEU and informativity

• Automatic metrics struggle in our linguistically 
controlled task →  Scoring differences in this task 

may demand a deeper understanding of language 

nuances that is not captured by current metrics

Experiment – Results IV

Correlation between automatic and human evaluation
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Conclusion
• LLMs struggle with coherent continuatios for relatively simple prompts, beyond the IC bias

• Information density of the prompt and decoding method impact text quality

• Modifying IC prompts affects capture of IC bias, depending on decoding strategy; however 

bias congruence doesn't guarantee higher continuation quality

• Surprisingly low correlation between automatic metrics and human judgments, underscoring 

NLG metric challenges and caution in interpretation
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