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• For successful argumentation, the best arguments are needed.


• Prior research mainly frames the problem as a retrieval or generation task.
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Suggestion. Instead, we help individuals improve their argumentative claims.
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guarantee base load power, as …

Finetuned LM

(Alshomary et al. 2022, Schiller et al. 2020)(Syed et al. 2023; Dumani and Schenkel 2020; Gretz et al. 2020)
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Introduction
Problem statement

Argument quality 
• is inherently subjective 

• depends on prior beliefs, stance, and one’s 

 subjective weighting of the discussed aspects


Problem 

• How can we improve argumentative text, if quality is so subjective?
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(Wachsmuth et al. 2017)



Introduction
Revisions in Argumentative Writing

Suggestion 

• learn from different revisions of the same argumentative text 


Text revision  
• essential part of argumentative writing 

• typically a recursive process until an optimal phrasing is achieved 

• phrasing directly influences the persuasive impact on the audience
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(Skitalinskaya et al. 2021; Skitalinskaya and Wachsmuth 2023)
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Task 


Given as input an argumentative claim, potentially along with context information,  
 
 
 
 
 
 
 

Suggested Task
Claim Quality Optimization
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This technology could be weaponized. Humans should be allowed to explore DIY gene editing.
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This technology could be 
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Humans should be allowed to explore DIY gene editing.

This technology could be 
weaponized, so it is important to 
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This technology could be weaponized. Humans should be allowed to explore DIY gene editing.

This technology could be weaponized 
and harmful to human beings.

This technology could be used by 
criminals to create and weaponize 

bio-mechanisms.

This technology could be 
weaponized, so it is important to 

safeguard it from being weaponized.

But how to decide which candidate is the best one?



Approach
BART-based Candidate Generation and Quality-based Reranking
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BART-based 

Candidate Generation

Original Claim. This technology could be weaponized.

Context. Humans should be 
allowed to explore [DIY gene 

editing] <LINK>.
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BART-based 

Candidate Generation

Original Claim. This technology could be weaponized.

Candidate 1. This technology 
could be [weaponized] <LINK>.

Candidate 2. This technology could be 
[weaponized] <LINK>, and therefore 

should not be allowed to exist.

Candidate 10. This technology could be 
weaponized, so it is important to 

safeguard from being weaponized. 
…
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editing] <LINK>.
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Original Claim. This technology could be weaponized.

Optimized claim. This technology could be [weaponized] 
<LINK>, and therefore should not be allowed to exist.
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To identify the optimal claim among the generated candidates we consider the 
following text and argument quality metrics:


Quality Assessment Metrics

• Grammatical Fluency. Absolute assessments of text variations (MSR corpus) 
(Toutanova et al. 2016)


• Argument Quality. Relative assessments of argumentative text variations 
(Skitalinskaya et al. 2021)


• Meaning Preservation. Semantic similarity of SBERT embeddings  
(Reimers and Gurevych 2019)
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Quality-Based Reranking
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Score = α ⋅ fluency + β ⋅ meaning + γ ⋅ argument, α + β + γ = 1, α, β, γ ∈ [0,1]

• To favor certain dimensions we integrate the metrics as the weighted linear sum of 
individual scores:
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• To favor certain dimensions we integrate the metrics as the weighted linear sum of 
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• Optimal weights are found via grid search by maximizing Pearson’s correlation coefficient 
between the weighted score and the original order of the revisions in the revision history.
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Experimental setup

• Experiments

• Data. 190K claim revisions from Kialo, 600 for manual evaluation

• Approaches. BART combined with reranking approaches and baselines 

• Ranking Baselines 
• Top-1. Returns BART’s most likely output

• Random. Returns any of the 10 candidates pseudo-randomly

• SVMRank. Returns best candidate based on existing ranker (Skitalinskaya et al. 2021)

26



Evaluation Results
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↓↓
Automatic Human

Approach BLEU Rouge-L SARI NoEdit ExM Rank  
Baselines
    Unedited 69.4 0.87 27.9 1.00 0.0% - 
    BART + Top-1 64.0 0.83 39.7 0.31 7.8% 2.16
    BART + Random 62.6 0.83 38.7 0.28 6.8% 2.06
    BART + SVMRank 55.7 0.76 38.8 0.03 4.5% 1.95
Approach
    BART + Ours 59.4 0.80 43.7 0.02 8.3% 1.92
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• High scores of Unedited on BLEU indicate that many human revisions introduce 
few changes. 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• High scores of Unedited on BLEU indicate that many human revisions introduce 
few changes. 


• BART + Ours performs best on SARI.

• Human annotators prefer optimized candidates selected by our approach.
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Specification

Simplifi

Reframing

Elaboration Disambiguation

Corroboration Copy editing

Neutralization

Specifying or explaining a given fact or meaning (of the argument) by 

adding an example or discussion without adding new information.

It is very common for governments to actively make certain forms of healthcare [harder for minority 
groups to access] <LINK>. They could also, therefore, make cloning technology hard to access.



Optimization Type Taxonomy
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Specifi

Simplifi

Reframing

Elaboration Disambiguation

Corroboration Copy editing

Neutralization

Adding, editing, or removing evidence in the form of links that 

provide supporting information or external resources to the claim.

[Person-based predictive policing technologies] <LINK> - that focus on predicting who is likely to 
commit crime rather than where is it likely to occur - violate the [presumption of innocence.] <LINK>.



Optimization Type Taxonomy
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Specifi

Simplifi

Reframing

Elaboration Disambiguation

Corroboration Copy editing

Neutralization

Improving the grammar, spelling, tone, or punctuation of a claim, 

without changing the main point or meaning. 

Women are experiencing record level levels of success in primaries.



Performance across Optimization Types  
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• Jaccard similarity of human and 
generated revisions is 0.37. 
 

Type Human Approach Better Worse
Specification 59   152 65% 16%
Simplification 43 18 61% 11%
Reframing 29 21 62% 5%
Elaboration 23 55 62% 20%
Corroboration 161 38 53% 24%
Neutralization 7 0 - -
Disambiguation 8 8 63% 12%
Copy editing 293 301 59% 15%
Overall 623 593 60% 16%
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Performance across Optimization Types  

• Jaccard similarity of human and 
generated revisions is 0.37.


• Specification is performed 2.5 times 
more often compared to humans.


• Corroboration is performed 4 times less 
often than humans.


• Elaboration and corroboration have the 
highest rate of unsuccessful revisions. 
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Type Human Approach Better Worse
Specification 59   152 65% 16%
Simplification 43 18 61% 11%
Reframing 29 21 62% 5%
Elaboration 23 55 62% 20%
Corroboration 161 38 53% 24%
Neutralization 7 0 - -
Disambiguation 8 8 63% 12%
Copy editing 293 301 59% 15%
Overall 623 593 60% 16%



What Else Can Be Found in Paper

More details regarding 
• the suggested approach

• experimental results

• examples of generated optimizations


And more experiments and discussion on 
• relationship between revision intentions and optimization types

• how context can be used to improve the quality of generated texts

• how the approach generalizes to other domains of text

39



Takeaways

Contributions 
• New task of claim optimization 

• A computational approach combining quality-based reranking with text generation

• Taxonomy of optimization types and challenges in modelling them computationally


(Select) Findings 
• Utilising context information increases the quality of generated texts

• Approach and quality metrics generalize to other domains

• Corroboration and elaboration types were found as hard to automate


• Code repository: https://github.com/GabriellaSky/claim_optimization
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https://github.com/GabriellaSky/claim_optimization
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