

Entropy-based Sampling for Abstractive Multi-document Summarization in Low-resource Settings

Laura Mascarell, Ribin Chalumattu, and Julien Heitmann

Introduction and Background Abstractive Multi-document Summarization (MDS)

Abstractive Summarization

 \rightarrow Research in MDS mostly focuses on English and MDS training data

Introduction and Background Abstractive Multi-document Summarization (MDS)

Single-document summarization (SDS) models for MDS task

 \rightarrow Dynamic ensemble (Hokamp et al., 2020)

$$p_{ heta}(y_t|\mathcal{X}) = rac{1}{|\mathcal{X}|} \sum_{\mathbf{x_i} \in \mathcal{X}} p_{ heta}(y_t|\mathbf{x}_i;\mathbf{y}_{0:t-1})$$

Introduction and Background Abstractive Multi-document Summarization (MDS)

Single-document summarization (SDS) models for MDS task

 \rightarrow Dynamic ensemble (Hokamp et al., 2020)

Contributions

- Entopy-based sampling approaches for the MDS task
- German MDS test set for abstractive MDS

1. Minimum Entropy $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$

- 1. Minimum Entropy $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$
- 2. Max-predicted Probability Threshold $H(X) = -p_{max} \log p_{max}$

- 1. Minimum Entropy $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$
- 2. Max-predicted Probability Threshold $H(X) = -p_{max} \log p_{max}$
 - a) $p_{max} > 0.35$: choose higuest p_{max} prediction
 - b) $p_{max} < 0.35$: average log-probabilities

- 1. Minimum Entropy $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$
- 2. Max-predicted Probability Threshold $H(X) = -p_{max} \log p_{max}$
 - a) $p_{max} > 0.35$: choose higuest p_{max} prediction
 - b) $p_{max} < 0.35$: average log-probabilities
- 3. Pointwise Mutual Information $p(y|\mathbf{x}) = logp(y|\mathbf{x}) - logp(y)$

Multi-GeNews German Abstractive MDS Test Set

Data collection

- 1. Obtain clusters of related articles from SRF news portal.¹
- 2. Generate summary by combining their lead paragraphs.
- 3. Filter salient summary sentences using mBertExt

Final test set

- 402 clusters of articles + summary
- 2 to 6 related articles per cluster

Chaos am Flughafen Zürich

«Plötzlich war einfach der Bildschirm schwarz»

Gestrandete Passagiere sprechen über die bangen Stunden am Flughafen Zürich während der Luftraumsperre.

Mittwoch, 15.06.2022, 17

Problem bei Skyguide gelöst Luftraumsperre aufgehoben: Flug ab Zürich und Genf wieder möglich

15.06.2022 · 🕟 Mit Video

Grounding an zwei Flughäfen Skyguide-Ausfall: «Sowas darf nicht passieren»

15.06.2022 · 🕟 Mit Video

1. https://www.srf.ch/news

Experimental Setting

Models

- **mBART** (Liu et al., 2020) fine-tuned on:
 - 1. 20m (Rios et al., 2021)
 - 2. auto-hMDS (Zopf, 2018)
- GPT-2 (Radford et al., 2019)

Approaches

- *H_{min}* minimum entropy
- H_{th} max-predicted probability threshold
- *H_{pmi}* pointwise mutual information
- concat articles are concatenated into a single input
- *DynE* dynamic ensemble (Hokamp et al., 2020)

Experimental Setting

Models

- **mBART** (Liu et al., 2020) fine-tuned on:
 - 1. 20m (Rios et al., 2021)
 - 2. auto-hMDS (Zopf, 2018)
- GPT-2 (Radford et al., 2019)

Approaches

- *H_{min}* minimum entropy
- H_{th} max-predicted probability threshold
- *H_{pmi}* pointwise mutual information
- concat articles are concatenated into a single input
- DynE dynamic ensemble (Hokamp et al., 2020)

100 words Method **R1**↑ **R2**↑ **RL**↑ $\rho\downarrow$ mBART concat 23.0 6.0 14.8 9.23 mBART + DynE22.24.8 14.9 1.5 2.46 $mBART + H_{min}$ 23.4 5.6 15.0 24.5 6.2 $mBART + H_{th}$ 15.6 2.72 $mBART + H_{pmi}$ 23.9 7.2 16.1 2.78

Table 1: Performance on Multi-GeNews test set. MBart fine-tuned on the 20m dataset.

Manual Evaluation Tasks

- 1. Summary Ranking Task
 - \rightarrow relative quality of the summaries
- 2. Faithfulness Annotation Task
 - \rightarrow summary text spans (Krishna et al., 2023)

Evaluation on 20 instances of Multi-GeNews

- 3 source articles
- Lexical differences between summaries
 - Token-level edit distance between 5 and 10

Summary Ranking Task - majority agreement

- DynE mixed ratings
- H_{th} consistently ranked top (1st- 2nd rank)
- H_{pmi} consistently ranked bottom (3rd-4th rank)

Summary Ranking Task - majority agreement

- DynE mixed ratings
- H_{th} consistently ranked top (1st- 2nd rank)
- H_{pmi} consistently ranked bottom (3rd-4th rank)

H_{th}

Donald Trump hielt sich in der Nacht auf Mittwoch in den beiden Kammern des US-Kongresses seine dritte Rede ab. [Donald Trump delivered his third speech to both chambers of the U.S. Congress on Wednesday night.]

H_{pmi}

Donald Trump hielt sich in den USA nicht an die Corona-Regeln. [Donald Trump did not follow the Covid rules in the USA.]

Summary Ranking Task - majority agreement

- DynE mixed ratings
- H_{th} consistently ranked top (1st- 2nd rank)
- H_{pmi} consistently ranked bottom (3rd-4th rank)

Faithfulness Annotation Task

- Overall, lots of hallucinations
- No significant improvement with H_{pmi}
 - 36.2% (H_{pmi}) vs. 33.3% (H_{th})

Conclusions

Abstractive MDS of German text

- Explore multiple entropy-based approaches
- Build and release a test set on the news domain

Future work

- Important to tackle hallucination
- MDS with Large Language Models

Thank you!

Entropy-based Sampling for Abstractive Multi-document Summarization in Low-resource Settings

Authors: Laura Mascarell, Ribin Chalumattu, and Julien Heitmann

Link to paper

