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Research Question
Are the children’s stories generated by large language models (LLMs) and 

instruction following models trustworthy?

Generated stories may contain toxic text

Methodology
Dataset:

• 122 old stories collected from project Gutenberg.
• 10 modern stories collected from the web.

Models:
• Open Pre-trained Transformer (OPT) [6.7 Billion parameters]
• LLaMA [7 Billion parameters]
• Alpaca (LLaMA tuned for instruction-following)

Story generation:

• LLM:
• Provide a part of old story as the context for the LM to generate on

• First sentence
• First 256 tokens
• First 512 tokens

• Instruction-following Model:
• Use four different instruction templates based on old stories

 

S.N Template
1 Instruction : Write a short children's story given the title.

Input: {TITLE}
2 Instruction : Write a short children's story.
3 Instruction : Write a children's story given the title.

Input: {TITLE}
4 Instruction : Write a children's story.

Minimizes Error
Minimizes Biases

Minimizes potentially harmful content 
Produce age-appropriate content

Generated stories follow modern trends but 
struggle with nuances

• Modern children's stories use 

shorter sentences.

• Longer prompts result in LLM 

stories with longer sentences.

• Alpaca's sentences resemble 

modern stories.

𝐹𝑅𝐸𝑆 = 206.835 − 1.015
𝑡𝑜𝑡𝑎𝑙	𝑤𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙	𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 − 84.6

𝑡𝑜𝑡𝑎𝑙	𝑠𝑦𝑙𝑙𝑎𝑏𝑒𝑙𝑠
𝑡𝑜𝑡𝑎𝑙	𝑤𝑜𝑟𝑑𝑠

• FRES assesses text 

readability.

• Higher value, easier to read.

• Modern children's stories 

have higher FRES

• LLMs prompted with older 

stories tend to mimic the 

context

• Alpaca generates stories that 

are easier to read

(a) severe toxic (b) Identity hate

(c) insult (d) threat

Fig: Various toxicity measures for the actual and generated stories. Each cell in a 
subplot represents the percentage of sentences rated on a toxicity scale, with x-
axis values indicating the toxicity level.
• Older stories tend to be more toxic than modern ones.
• LLMs can learn toxic patterns from context leading to the generation of toxic text.
• LLMs can even generate toxic text from a very innocuous prompt.

Generated stories do not have similar sentence
structure to original stories
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Model Percentage Overlap with
Old Stories Modern Stories

OPT-Line 34.82 34.21
OPT-256 31.37 28.88
OPT-512 32.49 29.89

LLaMA-Line 34.23 33.64
LLaMA-256 32.14 29.82
LLaMA-512 32.27 30.73
Alpaca: T-1 17.31 20.37
Alpaca: T-2 14.67 17.52
Alpaca: T-3 15.20 16.92
Alpaca: T-4 15.41 17.84

Table: Overlap of the hashes of the dependency tree graph of the sentences in 
generated stories against old and modern actual stories.

Conclusion and Future Work
• Generated stories resemble real ones but lack nuances and may contain 

inappropriate content.

• LLMs are not yet appropriate for generating high-quality children’s literature.

• Future plans: Use reinforcement learning with feedback to improve LLM-

generated children's stories.
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