Tackling Hallucinations in Neural Chart Summarization

Saad Obaid ul Islam saadob12@gmail.com Iza Škrjanec skrjanec@coli.uni-saarland.de

Ondrej Dušek odusek@ufal.mff.cuni.cz

Vera Demberg vera@coli.uni-saarland.de

NLI preprocessing & input format adjustments alleviate hallucinations

Problem and Task Input:	Hallucinations	Our Contributions		
Road rage behavior among drivers in the U.S. as of 2015.	= generated text not grounded in the input	1. Showing that providing more		
40%	Intrinsic Hallucinations = verifiable from the input	context and reducing long-distance dependencies		

Extrinsic Hallucinations = not verifiable from the input in the linearized input format is important.

NLI cleaning step to remove ungrounded information in the training and test data.

Output:

This statistic shows the road rage behavior of drivers in the United States as of 2015. Four percent of the drivers said they have been on the receiving end of a rude gesture. The survey was conducted online and all the participants had a valid U.S. driving license.

1. Context & Distance in Input Format

Obeid & Hoque: xlabel1 | xvalue1 | x | chart-type | ylabel1 | yvalue1 | y | chart-type ... xlabel2 | xvalue2 ...

• no title, repetitive: 22 + 13 hallucinations in 50 sents.

Kantharaj et al: title yvalue1 yvalue2 ... xvalue1 xvalue2

Results						
Model	BLEU	ROUGE-2	PPL	Log. Agree.	Log. Contra.	NUBIA
C2T-Small Data						
Obeid & Hoque	18.5	_	-	-	-	_
T5 + Obeid & Hoque	26.1	33.5	7.4	5.5	67.8	35.4
T5 + Ours ¹	33.9	44.8	7.5	33.2	22.3	46.9
T5 + Ours + NLI ²	34.2	43.7	7.1	33.1	10.2	44.5
C2T-Big Data						
T5 Kantharaj et al.	37.0	50.6	10.0	34.5	22.9	53.5
T5 + Ours	39.8	55.0	8.2	39.3	21.3	55.6
T5 + Ours + NLI	42.2	50.7	8.2	40.3	15.1	53.5

• no x-y labels, long-dist. deps.: 4 + 11 hallu. in 50 sents.

Ours:

title xlabel - ylabel xvalue1 yvalue1, xvalue2 yvalue2... xvalueN yvalueN

- adding title = biggest improvement
- adding x-y labels = minor improvements
- title + x-y labels + pairing labels & values = best

2. Cleaning Noisy Training and Test Data

- Why?: 20/50 references contained ungrounded info in C2T-Small dataset
- **Hypothesis:** Ungrounded info in training data \rightarrow hallucinations in system outputs
- **Proof:** Autochart dataset + noise 27/50 outputs with ballucipations

Error analysis: 1 **0** + 18 / 2 **0** + 4 hall. in 50 sents.

Human Evaluation

Model	Values Correct	Has Outside Info	Informative	Coherent	Fluent			
C2T-Small Data, 50 samples								
T5 + Ours	56.00%	38.00%	3.80/5	3.81/5	3.88/5			
T5 + Ours + NLI	*76.00%	*17.00%	3.60/5	3.91/5	3.96/5			

*significant difference

Key takeaways and Discussion

https://github.com/WorldHellow/Hallucinations-C2T

• More context & less long-distance deps \rightarrow less intrinsic hall.

• Ungrounded info in training data \rightarrow hallucinations in output

• NLI filtering \rightarrow significantly less hallucination

• Gold-standard datasets have ungrounded info

• Automatic metrics do not measure hallucinations well

Supported by ERC NG-NLG (101039303) & EUIN-ACTION from NORFACE Governance (462-19-010, GL950/2-1). Using resources provided by LINDAT/CLARIAH-CZ (Czech Ministry of Education LM2018101).