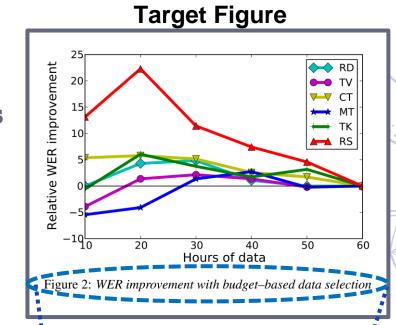


Summaries as Captions: Generating Figure Captions for Scientific Documents with Automated Text Summarization

Chieh-Yang Huang,1* Ting-Yao Hsu,1* Ryan Rossi,2 Ani Nenkova,2
Sungchul Kim,2 Gromit Yeuk-Yin Chan,2 Eunyee Koh,2
Clyde Lee Giles,1 Ting-Hao 'Kenneth' Huang1

¹Penn State University, PA, USA {chiehyang, txh357, clg20, txh710}@psu.edu ² Adobe Research, CA, USA {ryrossi, nenkova, sukim, ychan, eunyee}@adobe.com *Equal Contribution



Introduction

- How to generate **high-quality captions for scientific figures**?
 - Existing vision-based approaches fail to generate reasonable captions.
 - A huge portion of the captions in realword data are poorly written.
 - What do a "high-quality" caption need?

Author-Written Caption

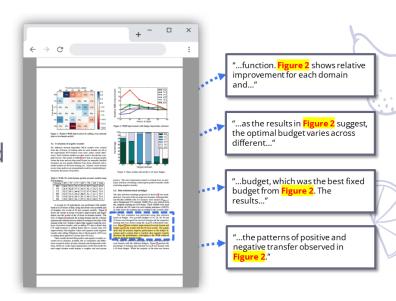
Figure 2: **WER improvement with budget–based data selection**

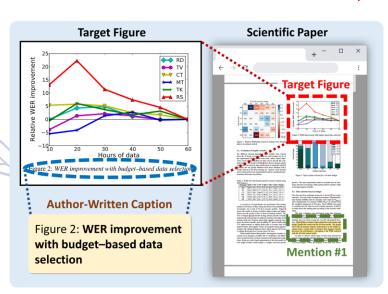
Introduction

· YES!

With **Awesome-Alignment**, we found that 75% of the information in the **caption** can be identified in the **figure-mentioning paragraphs**.

How about solving it as a summarization task?




Figure-mentioning texts contain 75% of the information needed to create a caption!

Introduction

 We formulate the scientific figure captioning task as a summarization task, and it works!

Extracting Mention(s) of the Figure

- "...function. Figure 2 shows relative improvement for each domain and..."
- "...as the results in Figure 2 suggest, the optimal budget varies across different..."
- "...budget, which was the best fixed budget from Figure 2. The results..."
- "...the patterns of positive and negative transfer observed in Figure 2."

Summarization

Figure 2: Performance of different target domains and budgets. The graphs show the improvement of the WER obtained with a fixed budget for each target domain as the budget increases, and negative transfer decreases the performance, converging to the performance achieved with the 60-hour training model.

Automatic Evaluation

- We trained a **Pegasus** model, taking figure-mentioning paragraphs as the input and generate the caption.
- All the experiments were conducted on SciCap dataset.
- Pegasus with Paragraph+OCR outperforms vision-based approaches!

Model	Feature	Length	Rouge-1 (F1)		Rouge-2 (F1)		Rouge-L (F1)		MoverScore		BERTScore	
1,10001				Norm	Score	Norm	Score	Norm	Score	Norm	Score	Norm
Pegasus	P P+O	14.0 14.0	.374	2.067 2.106	.205 .212	3.507 3.635	.334	2.201 2.242	.570 .571	1.095 1.097	.682 .685	1.196 1.202
	P+O+B	38.3	.321	1.452	.154	1.916	.265	1.537	.546	1.044	.639	1.082
TrOCR BEiT+GPT2	Figure	10.0 15.8	.220 .164	1.464 0.864	.073 .042	1.653 0.666	.195 .144	1.502 0.917	.534 .529	1.033 1.013	.610 .592	1.096 1.031

How do human feel?

- The Mturk study indicates that vision-based model performs significantly worse.
- The domain expert study indicates Pegasus_{P+O+B} is ranked similarly to ground-truth captions.

Witark Sta	idy Oil	Selectii	ig willer	i one is the	WOISt:		
n = 90	#Maj. Votes↓	Avg. Votes↓	T-Test over Avg. Votes				
			\mathbf{Peg}_{P+O}	\mathbf{Peg}_{P+O+B}	Caption		
TrOCR	41		<.001***		.001**		
\mathbf{Peg}_{P+O}	20	4.54	-	.253	.973		
\mathbf{Peg}_{P+O+B}	24	4.93	-	-	.318		

19

4.53

Caption

Domain Expert Study on ranking

"which one is the best"						
n = 90	Avg.	T-Test on Avg. Ranking				
	Ranking \$\times\$	\mathbf{Peg}_{P+O+B}	Caption			
$\overline{\mathbf{Peg}_{P+O}}$	2.152	.016*	.015*			
\mathbf{Peg}_{P+O+B}	1.930	-	.923			
Caption	1.919	-	-			

Pegasus_{P+O+B}: Pegasus model but trained on caption with better quality (captions longer than 30 tokens).

Conclusion

- Scientific figure captioning task can be solved via text summarization.
- Handling the low-quality captions in the dataset is challenging and will be something we should explore next.
- Filling the **missing 25% information** will probably still require the information from figures.

Thanks! Please refer to our paper for more information.

https://arxiv.org/abs/2302.12324

