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Backgrounds #1

- Large corpora and computational resources have led to development of large language
models (LLMs) ubiquitous in a wide variety of tasks.

- The performance loss in no- or low-resource settings can be substantial compared to
their high-resource counterparts.

- A large amount of data is important to ensure the generalization of a model but it is not
always possible due to cost and time constraints or lack of target language data, experts.

- Data augmentation (DA) can be a solution which allows to artificially increase the size of
a dataset which ensures the generalization of a model.
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Backgrounds #2

- As a novel data generation, we propose Generative Adversarial Network using Language
Models (GAN-LM).

- Introduce tunable thresholds and a decoding method to control the diversity and lexical
similarity of synthetic data to mitigate the mode collapse problem in GAN.

- GAN-LM employs an adversarial training with the offered data in each task to learn the
different characteristic which generates suitable synthetic data for each task.

- Also, we mixed GAN-LM with other DAs (e.g. Back-translation) to enhance further in low-
resource languages and limited entity linking task.
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Methodologies - Baseline #1

- Four different non-contextual-level augmentations are considered.

(1) Lexical: Use WordNet [1] to replace each word in the original text with a synonym.
(2) Spelling: Generate alternate texts from common misspellings of the original words [2].

(3) Character: Randomly change characters in the original tokens with four different ways:
Insertions, substitutions, swaps and deletions [3].

(4) Token-LM: Use LM to get token for input text and then, perform nearest neighbor
search for each token to find alternate tokens. BART [4] and mBART [5] are considered.

[1] Miller, George A. et al. “Introduction to WordNet: An On-line Lexical Database.” International Journal of Lexicography 3 (1990): 235-244.

[2] Coulombe, Claude. “Text Data Augmentation Made Simple By Leveraging NLP Cloud APIs.” ArXiv abs/1812.04718 (2018): n. pag.

[3] Pruthi, Danish et al. “Combating Adversarial Misspellings with Robust Word Recognition.” Annual Meeting of the Association for Computational Linguistics (2019).

[4] Lewis, Mike et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.” Annual Meeting of the Association for Computational Linguistics (2019).
[5] Tang, Y. et al. “Multilingual Translation with Extensible Multilingual Pretraining and Finetuning.” ArXiv abs/2008.00401 (2020): n. pag.
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Methodologies - Baseline #2

- Three different contextual-level augmentations are explored.

(1) Text Generation: Use the original text as the initial context and extend it. GPT-2 [6],
OPT [7] and mGPT [8] are considered.

(2) Paraphrase: Transform a sentence with similar semantic meaning but a different
syntactic form where T5 [9] and Prism model [10] are employed.

(3) Back-translation: Retranslate content from target language back to its source
language to generate a sentence variant. Multiple pre-trained neural translation models
are applied [11].

[6] Radford, Alec et al. “Language Models are Unsupervised Multitask Learners.” (2019).

[7]1 Zhang, Susan et al. "OPT: Open Pre-trained Transformer Language Models.” ArXiv abs/2205.01068 (2022): n. pag.

[8] Tan, Zhixing et al. "MSP: Multi-Stage Prompting for Making Pre-trained Language Models Better Translators.” ArXiv abs/2110.06609 (2021): n. pag.

[9] Raffel, Colin et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.” ArXiv abs/1910.10683 (2019): n. pag.

[10] Thompson, Brian and Matt Post. “Automatic Machine Translation Evaluation in Many Languages via Zero-Shot Paraphrasing.” ArXiv abs/2004.14564 (2020): n. pag.
[11] Helsinki-NLP. 2023. Github - helsinki-nlp/opus-mt: Open neural machine translation models and web services.
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Methodologies - GAN-LM #1

- To extend the usability of GAN in NLP domain, we propose GAN-LM which combines
GAN with pre-trained LM regardless of non-contextualized and contextualized models.

- We considered a WGAN-GP [12] which uses the Wasserstein distance as loss to
capitalize on the probability distributions from fake and real data.

- Compared to the vanilla GAN, it is robust to vanishing gradient and mode collapse.

[12] Gulrajani, Ishaan et al. “Improved Training of Wasserstein GANs.” NIPS (2017).
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Methodologies - GAN-LM #2
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Figure 1. GAN-LM with pre-trained LM.
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Methodologies - GAN-LM #3

- In training part, we encode the input text into
embeddings using pre-trained LM encoder.
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Methodologies - GAN-LM #4
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Figure 1. GAN-LM with pre-trained LM.
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- In synthetic data generation, we feed the target text to
the encoder and add Gaussian noise on it.

- The generator will produce the synthetic embedding
for that target text.

- Then, we average the original and synthetic
embeddings to maintain the structure of original text.

- To decode, we perform nearest neighbor search for
each token using generated synthetic embeddings.

- Finally, we introduce similarity thresholds to find
tokens that are diverse with similar semantics.
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Experimental Setting - Datasets and Employed Models

- (1) ZESHEL [13]: Zero-shot learning dataset for entity linking (EL) which is based on
Wikia where there are non-overlapping domains in train/validation/test sets.

- (2) TREC [14]: Text retrieval dataset for question classification (QC) where questions
were manually created with 50 fine class labels.

- (3) mSTS [15]: Multilingual version of semantic textual similarity (STS) task which has
sentence pairs in 8 different languages.

[13] Logeswaran, Lajanugen et al. “Zero-Shot Entity Linking by Reading Entity Descriptions.” ArXiv abs/1906.07348 (2019): n. pag.
[14] Li, Xin and Dan Roth. “Learning Question Classifiers.” International Conference on Computational Linguistics (2002).
[15] Cer, Daniel Matthew et al. “SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation.” International Workshop on Semantic Evaluation (2017).
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Experimental Setting - More....
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- For all downstream tasks, we construct a low-resource version (i.e. limited train set) to
highlight augmentation impact.

- In EL task, ZESHEL contains rich textual context for both entity mentions and catalog
entities. To isolate the impact of DA, we test model with and without those contexts.

- For EL task we used recall@k, for QC task F1 score, for STS task the spearman’s rank
correlation (SRC).

- In all experiments, we retrained target model 3 times with different seeds and reported
average results with 95% confidence interval (Cl).
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Results and Discussion - Entity Linking #1

14

Table 1. Recall values in ZESHEL without contexts.

Scenarios Type R@1 R@8 R@32 | R@64 CI Change
GA(?% 28.91% | 54.83% | 64.77% | 69.38% | 1.71% | 7.94%
GAN-LM | 242% | 48.96% | 60.85% | 66.16% | 1.65% | 3.51%
GPT | 2832% | 54.14% | 6331% | 67.46% | 1.89% | 6.77%
OPT | 27.54% | 53.28% | 62.81% | 67.15% | 1.89% | 6.16%
Paraphrase | 22.1% | 46.89% | 59.1% | 64.73% | 2.03% | 1.67%
Normal
without context | Back- |, 95| 44 790, | 57.13% | 62.99% | 2.06% | -0.14%
Translation
Token-LM | 21.33% | 45.52% | 57.55% | 63.29% | 1.83% | 0.39%
Char | 22.11% | 46.36% | 58.5% | 64.07% | 4.38% | 1.22%
Spel 21.52% | 45.76% | 58.22% | 63.88% | 2.25% | 0.81%
Lexical | 20.67% | 44.8% | 57.23% | 62.91% | 2.01% | -0.13%
G‘_‘g% 25.25% | 50.94% | 59.9% | 638% | 23% | 15.11%
GAN-LM | 18.67% | 42.43% | 55.21% | 61.03% | 1.97% | 9.47%
GPT | 22.52% | 47.52% | 58.23% | 62.62% | 2.37% | 12.86%
OPT 19.76% | 45.07% | 57.06% | 61.82% | 2.33% | 11.07%
Paraphrase | 17.83% | 41.16% | 53.79% | 60% | 2.41% | 8.33%
Low-resource Back-
without context | 16.14% | 37.71% | 50.63% | 56.82% | 2.84% | 5.46%
Translation
Token-LM | 15.86% | 36.9% | 49.98% | 562% | 2.9% | 4.87%
Char | 1652% | 37.91% | 51.34% | 57.53% | 2.67% | 5.96%
Spel 16.11% | 37.44% | 50.63% | 56.87% | 3.88% | 5.4%
Lexical | 15.56% | 36.67% | 49.9% | 56.01% | 2.24% | 4.67%
Baseline |, 4o, | 3124% | 44.65% | 51.16% | 3.09% .
- Low
Baseline |, 570 | 44.80% | 57.56% | 63.13% | 1.92% N
- Normal

GAN-LM - © 2023 Amazon.com, Inc

- Target: Find the generalized augmentations for zero-shot
learning task.

- There are large improvements, especially with contextual-level.
- GAN-LM mostly outperforms, except for GPT and OPT.

- In this case, EL model has been trained on only entity in train
set to infer the entity with its contexts in test set.

- We further investigated the combination between GAN-LM and
GPT, called GAN-LM-GPT.

- We observed improvements after combinations of both
methods, especially in the low-resource case.
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Results and Discussion - Entity Linking #2
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Table 2. Recall values in ZESHEL with contexts.

Scenarios Type R@1 R@8 | R@32 | R@64 CI | Change
GAN-LM | 39.13% | 66.45% | 763% | 79.98% | 0.65% | 1.23%
GPT | 3736% | 6531% | 74.78% | 78.65% | 1.54% | -0.21%
OPT | 37.63% | 6537% | 74.88% | 78.77% | 0.93% | -0.08%
Paraphrase | 37.88% | 65.35% | 74.94% | 78.7% | 0.76% | -0.02%
omidl Back- | 37930, | 6526% | 74.95% | 78.73% | 125% | -0.07%
with context | Translation
Token-LM | 37.53% | 64.58% | 74.49% | 78.41% | 127% | -0.49%
Char | 37.53% | 64.68% | 74.6% | 78.56% | 1.37% | -0.4%
Spel | 37.27% | 64.42% | 74.42% | 78.38% | 1.19% | -0.62%
Lexical | 37.49% | 64.86% | 74.89% | 78.66% | 1.66% | -0.27%
GAN-LM | 23.93% | 49.19% | 61.5% | 66.15% | 1.29% | 3.11%
GPT | 2157% | 47.75% | 59.75% | 64.69% | 2.05% | 1.66%
OPT | 22.84% | 47.99% | 60.47% | 65.38% | 1.68% | 2.39%
Paraphrase | 20.13% | 45.59% | 58.36% | 63.62% | 1.75% | 0.14%
Low-resource | Back- | 1, 60| 49950, | 54.86% | 60.84% | 1.98% | -29%
with context | Translation
Token-LM | 13.76% | 35.95% | 48.64% | 54.97% | 1.62% | -8.45%
Char | 14.92% | 38.11% | 51.17% | 57.35% | 2.85% | -6.4%
Spel | 19.46% | 44.46% | 56.85% | 62.54% | 4.71% | -0.96%
Lexical | 17.59% | 41.68% | 54.03% | 60.18% | 2.62% | -3.41%
Baseline | 0006 | 45.19% | 57.63% | 63.39% | 1.59% .
-Low
Baseline | o7 030 | 659 | 75.08% | 78.95% | 1.19% | -
- Normal
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- For scenarios with context, most augmentations decrease the
performance.

- This is because synthetic data is less related to the available
contexts.

- However, GAN-LM always promises the improvements.

- We observed that GAN-LM and its complement, GAN-LM-GPT,
are the best choices for entity linking task.
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Results and Discussion - Question Classification

16

Table 3. F1 values in TREC.

Scenarios Type F1 CI Change
GAN-LM 32.14% | 2.23% | 16.01%
GPT 29.16% | 2.66% | 13.03%
OPT 28.75% | 2.7% | 12.62%
Paraphrase 28.39% 3% 12.26%
Half-train set Back- 28.03% | 2.36% | 11.9%
Translation
Token-LM 27.16% | 1.67% | 11.03%
Char 255% | 7.02% | 9.37%
Spel 29.05% | 2.16% | 12.92%
Lexical 26.93% | 5.02% | 10.8%
GAN-LM 1015% | 1.95% | 9.27%
GPT 8.48% | 3.61% 7.6%
OPT 8.17% 1.9% | 7.29%
Paraphrase 593% | 2.42% | 5.05%
Low-resource Back- 727% | 159% | 6.39%
Translation
Token-LM 526% | 3.72% | 4.38%
Char 4.19% | 1.42% | 3.31%
Spel 7.68% | 4.03% 6.8%
Lexical 6.09% 33% | 521%
Baseline - Low 0.88% | 1.54% -
Baseline - Half 16.13% | 1.16% -
Baseline - Normal | 24.97% | 2.27% -

GAN-LM - © 2023 Amazon.com, Inc

- Target: Find label-invariant augmentations to improve the
performance.

- Contextual-level augmentations mostly outperforms the non-
contextual ones.

- GAN-LM is always the best performing approach which has
7.17% F1 improvement against Baseline - Normal.
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Results and Discussion - Multilingual STS #1

Table 4. SRC values in mSTS.
Scenarios Type EN-AR | ES-EN | EN-DE | EN-TR | FR-EN | IT-EN | NL-EN CI Change

GA]:J% 46.18% | 55.92% | 59.23% | 43.712% | 60.93% | 57.32% | 53.9% | 2.64% | 2.38%
Normal GAN-LM 44.44% | 53.6% | 59.2% | 42.62% | 61.48% | 55.31% | 53.96% | 2.62% | 1.43%
orm mGPT 4524% | 50.86% | 59.2% | 42.52% | 60.51% | 53.07% | 53.86% | 2.711% | 0.67%

Paraphrase 4521% | 48.69% | 58.06% | 40.9% | 60.67% | 54.12% | 53.32% | 2.92% | 0.06%
Back-Translation | 46.36% | 50.62% | 57.26% | 41.82% | 58.64% | 53.48% | 52.98% | 2.72% | 0.08%
GAN-LM 31.75% | 37.05% | 44.711% | 24.21% | 43.12% | 39.96% | 43.96% | 3.06% | 5.43%
mGPT 30.29% | 34.33% | 38.11% | 19.64% | 34.9% | 33.37% | 39.19% | 4.83% | 0.44%
Paraphrase 28.67% | 35.93% | 37.76% | 22.04% | 354% | 32.63% | 35.24% | 3.59% | 0.13%
Back-Translation | 31.01% | 34.44% | 36.67% | 21.94% | 36.28% | 31.7% | 37.15% | 4.49% | 0.35%
Baseline - Low | 29.95% | 33.13% | 36.04% | 18.23% | 37.26% | 34.68% | 37.46% | 3.85% -
Baseline - Normal | 45.08% | 50.52% | 56.9% | 40.94% | 60.89% | 53.16% | 53.08% | 2.47% -

Low-resource

- Target: Find diverse and semantically consistent augmented samples in multilingual.
- In low-resource, all augmentations improve the overall performance, especially with GAN-LM.

- Improvement in normal is lower but still, GAN-LM mostly gives the best results, except for EN-AR.

amazon | science
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Results and Discussion - Multilingual

Table 4. SRC values in mSTS
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STS #2

FR-EN

Scenarios Type EN-AR | ES-EN | EN-DE | EN-TR IT-EN | NL-EN CI Change
—Gﬁi::;(M 46.18% | 55.92% | 59.23% | 43.712% | 60.93% | 57.32% | 53.9% | 2.64% | 2.38%
Normal GAN-LM 4444% | 53.6% | 592% | 42.62% | 61.48% | 55.31% | 53.96% | 2.62% | 1.43%
mGPT 4524% | 50.86% | 59.2% | 42.52% | 60.51% | 53.07% | 53.86% | 2.711% | 0.67%
Paraphrase 4521% | 48.69% | 58.06% | 40.9% | 60.67% | 54.12% | 53.32% | 2.92% | 0.06%
Back-Translation | 46.36% | 50.62% | 57.26% | 41.82% | 58.64% | 53.48% | 52.98% | 2.72% | 0.08%
GAN-LM 31.75% | 37.05% | 44.71% | 24.21% | 43.12% | 39.96% | 43.96% | 3.06% | 5.43%
Low-resource mGPT 30.29% | 34.33% | 38.11% | 19.64% | 34.9% | 33.37% | 39.19% | 4.83% | 0.44%
Paraphrase 28.67% | 35.93% | 37.76% | 22.04% | 354% | 32.63% | 35.24% | 3.59% | 0.13%
Back-Translation | 31.01% | 34.44% | 36.67% | 21.94% | 36.28% | 31.7% | 37.15% | 4.49% | 0.35%
Baseline - Low | 29.95% | 33.13% | 36.04% | 18.23% | 37.26% | 34.68% | 37.46% | 3.85% -
Baseline - Normal | 45.08% | 50.52% | 56.9% | 40.94% | 60.89% | 53.16% | 53.08% | 2.47% -

GAN-LM - © 2023 Amazon.com, Inc

- We combined GAN-LM with back-translation, GAN-LM-Back, to enhance further.

- GAN-LM is mostly trained on Indo-European languages (i.e. EN, DE, NL, FR, ES, IT) which enhances the
generation ability for these languages.

- Back-translation works the best in EN-AR because it directly uses the well-defined translation models and this
decreases the unsuitable assigned languages (e.g. code-switching).
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Results and Discussion — Example of Augmented Data
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Table 5. Examples of generated augmentations. Bold texts in each cell mean the changed parts.

Type Example

Original Why do heavier objects travel downhill faster ?
Lexical Why do heavier object travel downhill quicker?
Spelling Whay do heavier objects travel downhill faster?
Character Why do heavier osbjects tralvel downhzill faster?
Token-LM WHY does heavier objects travel downhill faster ?
Back-Translation | Why are the heavier objects moving down faster?
Paraphrase Why do heavier objects go faster downhill?

Why do heavier objects travel downhill faster ?
OPT .

Because they’re heavier
GPT Why do heavier objects travel downhill faster ?

Or slow down to 2 km h
GAN-LM HOW do heavier objects travel down faster ?
GAN-LM-GPT HOW do heavier objects travel down faster ?

Or slow down to2 km h

GAN-LM - © 2023 Amazon.com, Inc
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Conclusion
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- In this work, we investigated the effect of different DAs to improve the performance on
various tasks.

- We studied both techniques found in the literature as well as the proposed GAN-LM.

- We subsampled training sets to study model performance under low-resource
conditions and used half or full training set to understand under different conditions.

- In most experiments, GAN-LM clearly gives the better results than non-contextual and
contextual-level augmentations.

- In addition to apply GAN-LM solely, we combined it with GPT and back-translation to
supplement the performance.
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Limitation

21

- There are three predictable limitations in the developed GAN-LM.

- (1) The convergence of training process in GAN-LM should be investigated carefully. We
may need a few iterations of training to confirm the suitable epochs for each task.

- (2) There can be a machine bias since each downstream model is trained on machine
generated synthetic data. Thus, searching the suitable pre-trained model is important.

- (3) GAN-LM is a general-purpose approach and its effectiveness on specific tasks or
domains may vary even if we did a thorough evaluation on four downstream tasks.
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Related Works #1 - Appendix

- There are relatively few works using GANSs for text generation even if it is one of the
most notable approaches in other domains.

- GAN model with Gumbel-Softmax was developed to have a differentiable sampling
distribution for approximating a categorical one *.

- GANs with recurrent and convolutional architectures were developed for text
augmentation at word and character-levels **.

- Sequence GAN with reinforcement learning was suggested to address the problem of
assessing a partially generated sequence ***.

* Kusner, Matt J. and José Miguel Herndndez-Lobato. "GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution.” ArXiv abs/1611.04051 (2016): n. pag.
** Subramanian, Sandeep et al. "Adversarial Generation of Natural Language.” ArXiv abs/1705.10929 (2017): n. pag.
***Yu, Lantao et al. "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient.” ArXiv abs/1609.05473 (2016): n. pag.
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Related Works #2 - Appendix
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- Sequential GAN was explored as a data generation for the bootstrapping of a new
language and the handling of low-resource features *.

- As far as we know, the work in ** was the first work to consider GAN with pre-trained LM
(BERT) but it was mainly for reducing the time consumption of annotating the data.

- In ***, out-of-domain data generation with a sequential GAN was suggested to build the
robust dialog system.

- GAN-LM combines LLM and GAN with tunable thresholds to suitably control the
diversity and similarity of generated data. This extends the applicability to various tasks.

* Golovneva, O. Yu. and Charith S. Peris. “Generative Adversarial Networks for Annotated Data Augmentation in Data Sparse NLU." ArXiv abs/2012.05302 (2020): n. pag.
** Croce, Danilo et al. "GAN-BERT: Generative Adversarial Learning for Robust Text Classification with a Bunch of Labeled Examples.” Annual Meeting of the Association for
Computational Linguistics (2020).

*** Marek, Petro et al. "OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation.” ArXiv abs/2104.02484 (2021): n. pag.
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Backgrounds - Appendix

- GAN-LM employs an adversarial training with the offered data in each task to learn the
different characteristic which generates suitable synthetic data for each task.

- Even if we used pre-trained LM in GAN-LM, we do not use its generation ability (e.g.
paraphrase, summarization) for downstream tasks.

- Also, we mixed GAN-LM with other DAs (e.g. Back-translation) to enhance further in low-
resource languages and limited entity linking task.

25 GAN-LM - © 2023 Amazon.com, Inc amazon ‘ SC|e nce



Methodologies - What is GAN? - Appendix

26

- Generative Adversarial Network (GAN) is based on the adversarial learning which aims to
trick the model by providing deceptive input.

- It consists of two neural networks, generator and discriminator, where each of them tries
to outplay the other.

- The goal of generator is to manufacture outputs that could be hard to distinguish from
real data. The discriminator aims to differentiate between real and synthetic data.

Real
Samples

https://www.kdnuggets.com/2017/01/generative-
adversarial-networks-hot-topic-machine-

learning.html

Fine Tune Training

2

oise

Figure 1. The introduction of GAN. .
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Experimental Setting - Datasets and Employed Models - Appendix

- (1) ZESHEL *: Zero-shot learning dataset for entity linking (EL) which is based on Wikia
where there are non-overlapping domains in train/validation/test sets. For this, we
employed BLINK ** bi-encoder model from scratch.

- (2) TREC ***: Text retrieval dataset for question classification (QC) where questions were
manually created with 50 fine class labels. For this application, we used fine-tuned BERT-
Tiny **** with training data in TREC.

- (3) mSTS *****: Multilingual version of semantic textual similarity (STS) task which has
sentence pairs in 8 different languages. For this task, we employed the mean pooling of
the pre-trained multilingual BERT (mBERT) ****** with fine-tuning from train set.

* Logeswaran, Lajanugen et al. “Zero-Shot Entity Linking by Reading Entity Descriptions.” ArXiv abs/1906.07348 (2019): n. pag.

** Wu, Ledell Yu et al. “Zero-shot Entity Linking with Dense Entity Retrieval.” ArXiv abs/1911.03814 (2019): n. pag.

*** | j, Xin and Dan Roth. “Learning Question Classifiers.” International Conference on Computational Linguistics (2002).

**** Tyr, lulia et al. "Well-Read Students Learn Better: On the Importance of Pre-training Compact Models.” arXiv: Computation and Language (2019): n. pag.

***** Cer, Daniel Matthew et al. “SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation.” International Workshop on Semantic Evaluation (2017).
****** Devlin, Jacob et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” ArXiv abs/1810.04805 (2019): n. pag.
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- (3) STS-B *: Integrated version of semantic textual similarity (STS) task which includes
news headlines, image captions and user forum posts.

For this task, we used SentenceTransformers ** from scratch using the mean pooling
layer with the pre-trained XLM-RoBERTa ***.

- (4) mSTS *: Multilingual version of STS task which has sentence pairs in 8 different
languages.

For this application, we employed the mean pooling of the pre-trained multilingual BERT
(MBERT) **** with fine-tuning from train set.

* Cer, Daniel Matthew et al. “SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation.” International Workshop on Semantic Evaluation (2017).
** Reimers, Nils and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.” Conference on Empirical Methods in Natural Language Processing (2019).
*** Conneau, Alexis et al. "Unsupervised Cross-lingual Representation Learning at Scale.” Annual Meeting of the Association for Computational Linguistics (2019).

**** Devlin, Jacob et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” ArXiv abs/1810.04805 (2019): n. pag.
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Table 4. SRC values in STS-B.

Scenarios Type SRC CI Change
GAN-LM 78.02% | 0.96% | 4.44%
GPT 76.94% | 0.83% | 3.36%
OPT 76.97% | 1.65% | 3.39%
Paraphrase 771.07% | 2.01% | 3.49%
Half-train set Back- 77.1% | 24% | 3.52%
Translation
Token-LM 76.11% | 0.57% | 2.53%
Char 7543% | 0.86% | 1.85%
Spel 76.61% | 2.13% | 3.03%
Lexical 76.74% | 1.39% | 3.16%
GAN-LM 61.66% | 1.46% | 23.44%
GPT 58.11% | 6.38% | 19.89%
OPT 59.17% | 3.95% | 20.95%
Paraphrase 57.9% 31% | 19.68%
Low-resource Back- 58.02% | 6.72% | 19.8%
Translation
Token-LM 56.66% | 2.59% | 18.44%
Char 53.32% | 1.6% 15.1%
Spel 54.52% | 5.07% | 16.3%
Lexical 57177% | 5.17% | 19.55%
Baseline - Low 38.22% | 10.61% -
Baseline - Half 73.58% | 4.08% -
Baseline - Normal | 78.49% | 0.28% -

GAN-LM - © 2023 Amazon.com, Inc

- Target: Get various and semantically closed augmented data
to improve the result.

- In low-resource, we could achieve great improvements,
especially with contextual-level and GAN-LM.

- In half-train set, the improvement is smaller than the one in
low-resource setting.

- Again, contextual-level outperforms non-contextual-level.

- GAN-LM vyields the best performance which gives a closed
performance as Baseline - Normal.
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