
Preventing Generation of
Verbatim Memorization in
Language Models Gives a
False Sense of Privacy

Daphne Ippolito
Florian Tramèr
Milad Nasr
Chiyuan Zhang
Matthew Jagielski
Katherine Lee
Christopher A. Choquette-Choo
Nicholas Carlini

When language
models perfectly
memorize their
training data, it can
lead to privacy and
copyright concerns.

Q: Can we avoid surfacing
memorization at inference time?

A: It depends on how we define
memorization.

An Exact Definition of Memorization

Eidetic memorization:

An Exact Definition of Memorization

Eidetic memorization:

MemFree Decoding: an Algorithm for Preventing Exact Memorization at
Inference Time

Step 1:

Insert all k-grams (for some pre-chosen k) from
the LM's training dataset into a database—in
our case, we use a bloom filter.

Step 2:

During generation, never emit a token that
would create a k-gram present in the database.
Instead choose a different otken to emit.

Examples of MemFree in Action

MemFree guarantees there is no
exact memorization longer than
the selected k-gram length.

MemFree guarantees there is no
exact memorization longer than
the selected k-gram length.

But does it eliminate all memorization?

MemFree fails in two ways.

Failure 1:
The LM "cheats" by outputting similar but non-verbatim memorization.

○ Changing capitalization
○ Modifying punctuation or whitespace
○ Inserting typos
○ Substituting synonyms (e.g. "&" instead of "and")

MemFree fails in two ways.

Failure 1:
The LM "cheats" by outputting similar but non-verbatim memorization.

○ Changing capitalization
○ Modifying punctuation or whitespace
○ Inserting typos
○ Substituting synonyms (e.g. "&" instead of "and")

To measure this cheating, we need a better defintion of memorization.

The Problem with an Exact Defintion of Memorization

Eidetic memorization:

An Approximate Definition of Memorization

Eidetic memorization:

Why a BLEU threshold of 0.75?

MemFree reduces approximate memorization.

Each + is BLEU score between
generated and true continuation.

y-axis is generated continuation
with MemFree, x-axis with standard
greedy decoding.

MemFree fails in two ways.

Failure 1:
The LM "cheats" by outputting similar but non-verbatim memorization.

○ Changing capitalization
○ Motidying punctuation or whitespace
○ Typo insertion
○ Synonym substitutions (e.g. "&" instead of "and")

To measure this cheating, we need a better defintion of memorization.

Failure 2:
Adversaries can circumvent MemFree through style-transferred prompts.

Adversaries can circumvent MemFree though style transferred prompts.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch
of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness,

double the spaces: It was the best of times, it was the worst of times, it was the age of wisdom, it was the age
of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the
season of Darkness,

lowercased: it was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it
was the epoch of belief, it was the epoch of incredulity, it was the season of light, it was the season of darkness,

capitalized: IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES, IT WAS THE AGE OF WISDOM, IT WAS THE AGE OF
FOOLISHNESS, IT WAS THE EPOCH OF BELIEF, IT WAS THE EPOCH OF INCREDULITY, IT WAS THE SEASON OF LIGHT, IT
WAS THE SEASON OF DARKNESS

✓

✗

✗

✗

in train
dataset?

Memorization is observed even after style transfer.

If MemFree is a bad method, why
write a paper about it?

Methods like MemFree are being deployed in real systems.

From Github CoPilot's FAQ:

What can I do to reduce GitHub Copilot's suggestion of code that matches public code?

We built a filter to help detect and suppress the rare instances where a GitHub Copilot
suggestion contains code that matches public code on GitHub. You have the choice to turn that
filter on or off during setup. With the filter on, GitHub Copilot checks code suggestions with
its surrounding code for matches or near matches (ignoring whitespace) against public code on
GitHub of about 150 characters. If there is a match, the suggestion will not be shown to you. We
plan on continuing to evolve this approach and welcome feedback and comment.

Github Copilot

CoPilot's memorization filter can be circumvented with style transfer.

CoPilot's memorization filter can be circumvented with style transfer.

CoPilot's memorization filter can be circumvented with style transfer.

CoPilot's memorization filter can be circumvented with style transfer.

Takeaways

While exact definitions helped us discover significant memorization in large language
models, they are insufficient to capture more subtle forms of memorization.

Takeaways

While exact definitions helped us discover significant memorization in large language
models, they are insufficient to capture more subtle forms of memorization.

Removing exact memorization at inference time fails in two ways:
1. model can cheat through making small inconsquential changes
2. adversary can style-transfer the prompt

Takeaways

While exact definitions helped us discover significant memorization in large language
models, they are insufficient to capture more subtle forms of memorization.

Removing exact memorization at inference time fails in two ways:
1. model can cheat through making small inconsquential changes
2. adversary can style-transfer the prompt

There is a cat-and-mouse game between inference-time methods to reduce
memorization and adversaries seeking to circumvent the defense.

Takeaways

While exact definitions helped us discover significant memorization in large language
models, they are insufficient to capture more subtle forms of memorization.

Removing exact memorization at inference time fails in two ways:
1. model can cheat through making small inconsquential changes
2. adversary can style-transfer the prompt

There is a cat-and-mouse game between inference-time methods to reduce
memorization and adversaries seeking to circumvent the defense.

The definition of memorization is domain-dependent.

