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Abstract

End-to-end task-oriented dialogue (TOD) sys-
tems have achieved promising performance by
leveraging sophisticated natural language un-
derstanding and natural language generation
capabilities of pre-trained models. This work
enables the TOD systems with more flexibility
through a simple cache. The cache provides the
flexibility to dynamically update the TOD sys-
tems and handle both existing and unseen dia-
logue scenarios. Towards this end, we first fine-
tune a retrieval module to effectively retrieve
the most relevant information entries from the
cache. We then train end-to-end TOD models
that can refer to and ground on both dialogue
history and retrieved information during TOD
generation. The introduced cache is straight-
forward to construct, and the backbone models
of TOD systems are compatible with existing
pre-trained generative models. Extensive exper-
iments demonstrate the superior performance
of our framework, with a notable improvement
in non-empty joint goal accuracy by 6.7% com-
pared to strong baselines.

1 Introduction

Task-oriented dialogue (TOD) systems play an im-
portant role in various applications, such as restau-
rants booking, alarm setting, and recommenda-
tions (Gao et al., 2018; Xie et al., 2022). These
systems can be broadly categorized into two groups:
pipeline-based dialogue systems and end-to-end di-
alogue systems. Pipeline-based dialogue systems
consist of four separate modules, namely a nat-
ural language understanding (NLU) module for
detecting user intents, a dialogue state tracking
(DST) module to track user belief states across
dialogue turns, a dialogue management (DM) mod-
ule for system actions based on dialogue states,
and a natural language generation (NLG) module

1This work was partially conducted during Jianguo’s in-
ternship and Stephen’s full-time employment at Meta AI Re-
search (FAIR).

Figure 1: An example of the auto-regressive TOD with
retrieved slot information from cache. The APICALL
generation process is shown, with N set to 3 for the
retrieval module.

for generating natural-language responses. How-
ever, the pipeline-based approach is label-intensive,
prone to error propagation, and challenging to
scale (Hosseini-Asl et al., 2020; Zhang et al., 2020;
Feng et al., 2023).

Recently, various approaches have been pro-
posed to utilize sequence-to-sequence models for
generating dialogue states and responses in an end-
to-end manner (Ham et al., 2020; Lin et al., 2020;
Yang et al., 2021; Gao et al., 2021; Chen et al.,
2021; Peng et al., 2021; Liu et al., 2021; He et al.,
2022b; Feng et al., 2023). Compared with the
pipeline-based systems, these approaches demon-
strate effectiveness on public datasets with fewer
direct annotations required, such as user intents and
dialogue acts. Additionally, they leverage the capa-
bilities of large-scale pre-trained language models,
such as GPT-2 (Radford et al., 2019), T5 (Raffel
et al., 2019), and BART (Lewis et al., 2020a), for
improved performance in NLU and NLG tasks.
However, these approaches are limited in their
ability to dynamically handle existing, unseen, or



emerging intents and slots, particularly in the con-
text of unseen dialogue scenarios such as new do-
mains and services (Hosseini-Asl et al., 2020; Peng
et al., 2021; Rastogi et al., 2020a).

In parallel, research on open-domain question
answering and dialogue systems has explored the
use of retrieval-augmented models. These mod-
els retrieve relevant information from a passage,
database, APIs, etc., and incorporate it into the
generation process, improving answer quality or
dialogue responses (Karpukhin et al., 2020; Izac-
ard and Grave, 2021; Dinan et al., 2018; Lewis
et al., 2020b; Shuster et al., 2021). Inspired by
these ideas, we combine both worlds and propose
an end-to-end TOD framework with a retrieval sys-
tem that addresses the challenge of handling both
existing and zero-shot unseen dialogue scenarios.

Our approach involves training the end-to-end
TOD models with a cache that contains accessible
domains, intents, slots and APIs. The cache can be
constructed based on the schema or database, or by
extracting information from accessible dialogues
when the schema or database is not fully accessible.
The cache serves as a reference point, allowing the
models to ground their responses in the retrieved
information. By incorporating a retrieval module
and leveraging this cache of knowledge, our system
enhances the flexibility and adaptability to handle
both existing and unseen intents and slots, and en-
ables robust performance even in novel dialogue
domains and services where the model has not been
explicitly trained. Figure 1 shows an illustrative
example of our approach, demonstrating how the
RETRIEVAL module retrieves relevant informa-
tion, such as slots in this case, from the cache to en-
rich the system’s understanding and generate more
accurate responses. The APICALL represents the
dialogue states from the system side, and APIRESP
returns information from external API interactions
between the system and system databases.

To build an accurate end-to-end TOD system
with the benefits of a simple cache, we fine-tune a
retrieval module to effectively retrieve the most rel-
evant and informative information from the cache,
using a Top-N retrieval strategy. Then we integrate
the retrieval module into the generative model to
facilitate end-to-end TOD generation. We evalu-
ate our approach on the publicly available Google
Schema-Guided Dialogue dataset (SGD) (Rastogi
et al., 2020b), which includes a significant number
of unseen dialogue domains and services in the

development and test sets.
The contributions of this paper are as follows: (1)

We design a simple yet effective end-to-end TOD
framework with a cache that enables dynamic han-
dling of intents and slots. The framework is com-
patible with existing pre-trained generative mod-
els, and enhances the system’s robustness. (2) Ex-
perimental results demonstrate the superior perfor-
mance of our approach compared to strong base-
lines. It achieves 6.7% improvement in non-empty
joint goal accuracy, demonstrating the effectiveness
in handling various dialogue scenarios, including
the challenging zero-shot unseen dialogues. (3)
To advance future research in accurate end-to-end
TOD systems, we conduct comprehensive ablation
studies and analyses to provide insights into the
impact of different components and design choices
within our framework.

2 Related Work

End-to-End TOD Systems End-to-end TOD
models have shown promising performance on pub-
lic dataset (Ham et al., 2020; Lin et al., 2020;
Yang et al., 2021; Gao et al., 2021; Chen et al.,
2021; Peng et al., 2021; Liu et al., 2021; He et al.,
2022a,b; Feng et al., 2023; Bang et al., 2023).
These approaches typically follow common pat-
terns: (1) Rely on powerful pre-trained seq2seq
models. (2) Use language modeling objectives to
generate NLU and NLG outputs, sometimes aug-
mented with auxiliary multi-task goals like DST
loss. (3) Either fine-tune models directly on the
target dataset or conduct pre-training on multiple
TOD dialogue datasets. (4) Employ data augmenta-
tion techniques such as back-translation and entity
replacement due to the challenges in collecting
large-scale TOD corpora. For example, Hosseini-
Asl et al. (2020) fine-tunes DistilGPT2 for TOD.
The model generates user belief states and system
responses in an auto-regressive way. Peng et al.
(2021) introduce two auxiliary tasks for belief state
prediction and grounded response generation and
pre-train language models first on multitple TOD
dataset. Gao et al. (2021) enables the belief state
to interact with both structured and unstructured
knowledge. Feng et al. (2023) designs a reward-
function learning objective to guide the model’s
generation. While these methods have demon-
strated effectiveness on public datasets, they have
limitations in handling unseen dialogue scenarios
such as unseen domains and services.



Retrieval-Augmented Models Retrieval aug-
mented approaches have been widely used in
open-domain question answering. For instance,
Karpukhin et al. (2020) propose a BERT-based (De-
vlin et al., 2019) dual-encoder framework to re-
trieve passages from Wikipedia, which is further
incorporated into open-domain conversations to
reduce hallucination and enrich engagement with
users (Shuster et al., 2021; Komeili et al., 2021).
These models retrieve information related to the
query from a knowledge base of sentences and
ground the generation response on this informa-
tion (Dinan et al., 2018; Lewis et al., 2020b). In-
spired by these works, we explore the integration
of retrieval modules into end-to-end TOD systems,
leveraging the retrieval-augmented approach to en-
hance the system’s performance in handling both
existing and novel dialogue scenarios.

3 TOD Systems with a Simple Cache

We present an end-to-end transformer-based frame-
work with a simple cache that is compatible with
multiple generative models, including BART, T5,
GPT2, etc. Our framework enables dynamic han-
dling of intents, slots, and APIs while maintaining
flexibility in choosing the backbone model.

Generally, our framework consists of two parts:
a retrieval model for retrieving the most relevant
and informative information from the cache, and an
end-to-end TOD model that generates APICALLs
and system responses based on the dialogue history
and the retrieved information. The retrieval model
functions by retrieving intents, slots, APIs, and
other relevant information from the cache.

Figure 2 illustrates one simple variant of our
framework, which is an encoder-decoder architec-
ture. In this variant, the retrieved information such
as slots are stacked together. We also introduce
another variant in Sec. 4.2, where each retrieved
information is concatenated with the dialogue his-
tory and then all the information are concatenated
together before being sent to the decoder.

3.1 Construction of Cache

In this section, we describe the construction of a
simple cache that provides necessary information
for the model’s referencing and grounding proce-
dure. The cache consists of intents, slots, and APIs
extracted from the schema and database. In cases
where the schema or database is not fully acces-
sible, we extract information from accessible dia-

logues. During training, it is important to note that
the cache exclusively contains information relevant
to the training dialogues and does not incorporate
any unseen information of dialogues in the test set.

Since there are different ways to construct a
cache, we design various templates to formalize
the retrieved information. Table 1 presents several
templates that we utilize. One example is the “API-
information” template, where an API includes all
the intents and relevant slots mentioned throughout
the whole dialogue. Although this template may
contain redundant information as some intents and
slots may not be mentioned initially, it allows us to
evaluate the model’s ability to disregard irrelevant
details.

In addition to the listed templates, we explore
several other templates with special tokens such
as “[INTENT] intent name [SLOT] slot name”, as
well as different orderings of intents and slots, such
as “intent name, intent description, slot name, slot
description” and “intent name, slot name, intent
description, slot description”. We conduct an in-
depth analysis of the effects of different cache tem-
plates in the experimental section.

3.2 Retrieval Module

After constructing the cache, we fine-tune a re-
trieval model to effectively retrieve the most rele-
vant and informative information for the dialogue
context. Given a dialogue history c, the TOD
system utilizes a retrieval module to retrieve Top-
N most relevant information s1, . . . , sN from the
cache. Firstly, based on the dialogue history, the
system triggers the retrieval module to generate
an APICALL, which includes relevant mentioned
intents, slots and values. Subsequently, the system
continues to use the retrieval module to generate a
system response based on all previous information.

To ensure accurate retrieval from the cache,
we fine-tune a dense passage retriever (DPR)
model (Karpukhin et al., 2020), which is a BERT-
based dual-encoder framework optimized via con-
trastive learning. Specifically, we obtain the hidden
representation hc for the dialogue history using an
encoder model, e.g., hc = BERTc(c). Similarly,
we use another BERT encoder to obtain the feature
representation hs for each retrieved information
entry from the cache, i.e., hs = BERTs(s). The
similarity between the dialogue history and the re-
trieved information entry is: sim(c, s) = hT

c ⊙ hs.
For each dialogue history, there are n relevant



Figure 2: Illustration of the end-to-end framework with a simple cache. The left figure shows the generation of
an APICALL, with the retrieval module extracting most relevant information such as slots from the cache. The
retrieved information, combined with dialogue history, is used by the decoder to generate the APICALL. The right
figure depicts the continuation of the dialogue, generating the system response. The system retrieves additional
information from the cache, and incorporate all previous information to generates a system response. The decoupling
of APICALL generation and system response generation aims to provide a clear representation of the framework’s
components and their interactions in an end-to-end setting.

Cache Templates Examples
INTENT: intent name, SLOT: slot name INTENT: findrestaurants, SLOT: city
intent name, slot name, service description,
intent description, slot description

findrestaurants, city, a leading provider for restaurant search and reservations,
find a restaurant of a particular cuisine in a city, city in which the restaurant is located

API-information
api name = FindRestaurants; optArg = has live music, price range,
serves alcohol; reqArg = city, cuisine

Table 1: Several typical templates of the simple cache construction, where each template represents one type of
cache. Some other templates can be found in Table 4.

(positive) entries and m irrelevant (negative) en-
tries, where n and m may vary as each dialogue
history would contain different active intents and
slots. Our objective is to learn a function that min-
imizes the distance between pairs of relevant di-
alogue histories and information entries than the
irrelevant pairs. The corresponding loss function
for a specific pair is as follows:

Lapi(c, s
+
1 , s

−
1 , . . . , s

−
m) = − log

exp(sim(hc,hs+1
))∑m

j=1 exp(sim(hc,hs−j
))

.

(1)

Once the retrieval module is fine-tuned, it
is incorporated into the end-to-end sequence-to-
sequence task-oriented dialogue generative model.
The parameters of the retrieval module remain fixed
during training of the generative model.

Negative Sampling In the training process, we
employ negative sampling to include retrieved in-
formation entries that are irrelevant to the dialogue
history. We utilize both natural and hard negative
pairs to enhance the robustness and performance of
the retrieval module.

For natural negative pairs, we consider pairs such
as “irrelevant intent, irrelevant slots” as counter-
parts to the positive pairs of “relevant intent, rele-

vant slots”. Additionally, we construct hard nega-
tive pairs that pose a more challenge to the retrieval
module. These hard negative pairs include com-
binations such as “relevant intent, irrelevant slots
from the same relevant intent” and “irrelevant in-
tents that are semantically similar to the relevant
intent, along with relevant slots from the relevant
intent”. By incorporating these hard negative pairs,
we encourage the retrieval module to learn to differ-
entiate between relevant and irrelevant information
effectively.

3.3 End-to-End TOD Systems

Our end-to-end TOD framework generates the API-
CALL and system response in an auto-regressive
manner. Figure 1 provides an example of this
process. The APICALL represents the dialogue
states from the system side, and same with previ-
ous work (Hosseini-Asl et al., 2020; Peng et al.,
2021), it is an intermediate step of the system re-
sponse generation, and they share the same model
framework to generate tokens autoregressively.

For each dialogue turn, the TOD framework trig-
gers the retrieval module twice. The system first
retrieves the Top-N information entries from the



constructed cache, i.e.,

Top-N info = Retrieval(c) . (2)

Then it generates an APICALL using the retrieved
information, i.e.,

APICALL = TOD(c,Top-N info) . (3)

After that the TOD framework retrieves another
set of Top-N information entries from the cache,
considering the generated APICALL, i.e.,

Top-N info = Retrieval(c,APICALL,APIRESP) , (4)

where APIRESP is automatically obtained from
corresponding API, without the need for prediction.

Finally, the system generates a system response
using the following inputs:

Response = TOD(c, APICALL, APIRESP, Top-N slots) .
(5)

4 Experimental Settings

4.1 Dataset

A substantial number of end-to-end TOD
works (Hosseini-Asl et al., 2020; Peng et al., 2021;
Lin et al., 2020; Yang et al., 2021; Su et al., 2021;
He et al., 2022b; Feng et al., 2023) commonly em-
ploy the MultiWOZ datasets (Budzianowski et al.,
2018; Zang et al., 2020). However, these studies
primarily focus on full-shot and few-shot learning,
with less emphasis on zero-shot evaluation. This
scope for zero-shot evaluation appears somewhat
constrained given that MultiWOZ only has five
domains and approximately 35 slots, all of them
are presented in the training set. In contrast, our
work aims to assess the system across large-scale,
unseen dialogue scenarios. We utilize the Google
Schema-Guided Dialogue (SGD) dataset (Rastogi
et al., 2020c). 1 SGD provides a more expansive
dialogue landscape, with over 16k multi-domain
conversations across more than 16 domains, 26
services and 200 slots. Importantly, half of these
services, intents and slots do not appear in the de-
velopment and test sets. Table 2 summarizes the
statistics of SGD.

4.2 Models

In term of baselines, we adopt (Lin et al., 2020;
Chen et al., 2021) and implement their model
MinTL (BART-Large). We also implement T5DST

1SGD processed dataset.

Dialogues Domains Services ZS Domains ZS Services
Train 16142 16 26 - -
Dev. 2482 16 17 1 8
Test 4201 18 21 3 11

Table 2: Data Statistics of SGD. ZS: Zero-Shot.

from (Lee et al., 2022), which achieves strong per-
formance on MultiWOZ 2.2 (Zang et al., 2020).
Since our end-to-end TOD framework is compat-
ible with existing pre-trained generative models,
we experiment with BART, GPT2 and T5. Interest-
ingly, we found that BART-Large (406M) perform
comparably with T5-Large (770M), despite having
fewer parameters. Moreover, it outperformed many
models developed by teams in DSTC8 (Rastogi
et al., 2020a), where the majority of models are
BERT-based classification models. Thus, we select
BART-Large as our primary backbone model.

Inspired by previous model designs in open-
domain question answering (Lewis et al., 2020b;
Izacard and Grave, 2021), we design two variants
for end-to-end TOD systems. The first, named
Fusion-in-Decoder TOD (FiD-TOD), is illustrated
in Figure 2, In this model, the retrieved information
such as slots, are stacked together. Notably, when
the retrieval model is not incorporated, FiD-TOD
becomes identical to MinTL (BART-Large). The
second variant FiD-TOD-NoStack, is depicted in
Figure 3 and is used as ablation study. In this model,
the retrieved information is not directly stacked,
and instead, the dialogue history is concatenated
with each retrieved information entry and then sent
to the shared encoder.

Regarding the generative model, we truncate the
tokens of dialogue history to 256, and retrieve Top-
5 most relevant information entries from the cache,
unless otherwise specified. For DPR fine-tuning,
we align one hard negative pair to each positive
pair. We employ the preset hyperparameters from
the ParLAI code, 2 such as setting the learning
rate to 5e-5, batch size to 32, etc. Initially, we
conducted experiments with slight alterations in
hyperparameters and observed no statistically sig-
nificant difference on performance. We selected
the best model based on its performance on the
development set.

The retrieve model is fine-tuned up to 3 epochs
based on open-sourced DPR (Karpukhin et al.,
2020), and the generative model is fine-tuned up
to 4 epochs with an overall batch size of 64 on

2ParLAI platform.

https://github.com/salesforce/DialogStudio/tree/main
https://github.com/facebookresearch/ParlAI


PPL Overall JGA Non-Empty JGA Token EM BLEU-4
MinT (BART-Large) (Chen et al., 2021) 2.385 0.812 0.364 0.497 0.179
T5DST (Lee et al., 2022) 2.419 0.810 0.361 0.491 0.170
FiD-TOD 2.133 0.829 0.431 0.501 0.179

Table 3: Testing results on the SGD dataset.

Cache Templates Top-1 Top-2 Top-3 Top-4 Top-5
INTENT: intent name, SLOT: slot name 0.833 0.882 0.914 0.945 0.960
INTENT: intent name, service description,
intent description, SLOT: slot name, slot description

0.887 0.922 0.952 0.976 0.980

intent name, slot name, intent description, slot description 0.835 0.906 0.928 0.946 0.955
intent name, slot name, service description,
intent description, slot description

0.913 0.943 0.965 0.977 0.981

API-information 0.844 0.927 0.956 0.962 0.967

Table 4: Top-5 retrieval accuracy on the test set of SGD.

Figure 3: Illustration of FiD-TOD-NoStack framework.

8 Nvidia Tesla V100 GPUs. All experiments are
based on public code from the ParLAI platform.

4.3 Evaluation Metrics

We evaluate the end-en-end TOD framework using
the following ParLAI metrics: (1) Top-N accuracy:
It evaluates the retrieval module through checking
whether the ground-truth slot appears in the Top-
N predicted candidates (Karpukhin et al., 2020).
(2) Joint Goal Accuracy (Overall JGA): It evalu-
ates whether the predicted APICALL on both seen
and unseen services is correct or not, specifically.
JGA is 1 if the model correctly predicts all intent,
slots and corresponding values in the APICALL.
Otherwise, JGA is 0. (3) Non-Empty JGA: It eval-
uates whether overall JGA is correct if the model
calls the API on both seen and unseen scenarios. In
SGD, most dialogue turns would not trigger an API
retrieval, resulting in empty APICALLs, and iden-
tifying Empty JGA is relatively quite easy (Chen
et al., 2021). Moreover, most services, intents and
slots in the test set are unseen. Therefore, we fo-
cus on Non-Empty APICALL turns and treat it as

the most crucial metric for evaluating the model’s
performance on both seen scenarios and its zero-
shot generalization ability on unseen scenarios. (4)
Token EM: It evaluates the utterance-level token
accuracy. Roughly corresponds to perfection un-
der greedy search (generative only). (5) Perplexity
(PPL): It measures the generative model’s ability to
predict individual tokens. (6) BLEU-4: It measures
the BLEU score (Papineni et al., 2002) between
the predicted system response and the reference
response.

5 Experimental Results

5.1 End-to-End TOD Performance

Table 3 shows the overall performance on the test
set. FiD-TOD outperforms baselines across most
metrics. Specifically, it improves the essential
NLU metric, i.e., Non-Empty JGA, by 6.7%. This
demonstrates the model’s enhanced capability in
handling both seen dialogue scenarios and, notably,
its capacity for zero-shot handling of unseen sce-
narios. As MinT (BART-Large) corresponds to
the FiD-TOD without the retrieval model from the
cache, this comparison highlights the significant
benefits that our design brings to the handling of
unseen dialogs. Additionally, the other metrics
related to NLG are also slightly improved.

5.2 Retrieval Performance

We hope the model can generalize well as there
could be many new intents and slots in real world.

General As shown in Table 4, our model shows
effective Top-5 retrieval accuracy on the test set,



PPL Overall JGA Non-Empty JGA Token EM BLEU-4
MinT (BART-Large) (Chen et al., 2021) 1.700 0.876 0.586 0.538 0.221
INTENT: intent name, SLOT: slot name 1.688 0.889 0.633 0.538 0.212
intent name, slot name, intent description, slot description 1.679 0.895 0.661 0.541 0.215
intent name, slot name, service description,
intent description, slot description

1.679 0.894 0.649 0.541 0.212

INTENT: intent name, service description,
intent description, SLOT: slot name, slot description

1.676 0.897 0.660 0.545 0.217

Table 5: Performance of FiD-TOD on the development set with variations of cache templates.

PPL Overall JGA Non-Empty Token EM BLEU-4
MinT (BART-Large) (Chen et al., 2021) 1.700 0.876 0.586 0.538 0.221
FiD-TOD w/ API-information (N=1) 1.653 0.896 0.658 0.543 0.218
FiD-TOD w/ API-information (N=5) 1.655 0.897 0.663 0.544 0.219
FiD-TOD-NoStack 1.683 0.895 0.653 0.543 0.215
FiD-TOD 1.676 0.897 0.660 0.545 0.217

Table 6: Results on development set. By default, retrieval module retrieves Top-5 information entries from cache.

keeping in mind that more than half of the services
and slots are unseen in this set. The model shows
good Top-1 accuracy and above 96% Top-5 accu-
racy, demonstrating strong abilities for handling
both seen and unseen intents and slots. Compared
to only using names, adding related service and
intent descriptions improves the Top-1 accuracy
by more than 5%. This suggests that incorporat-
ing descriptions can enhance the model’s ability to
generalize to unseen dialogue scenarios.

API-information When evaluating the “API-
information”, where a single API entry in the cache
encompasses all intents and slots information for
the whole dialogue. We see that the model has high
Top-1 accuracy and Top-5 accuracy. This suggests
that the model has a high potential to retrieve all the
related intents and slots information with a single
retrieval attempt.

Orders and Special Tokens We test with differ-
ent templates, such as switching orders of intents
and slots, and find no significant differences. We
also find that adding the special tokens “INTENT”
and “SLOT” slightly decreases the Top-1 accuracy.

Negative Sampling Experiments with both nor-
mal and hard negative pairs, including varying num-
bers of hard negative pairs, showed no significant
impact on retrieval performance. This could be
attributed to the fact that, unlike longer passages
in question answering, dialogue intents, slots, and
APIs are generally easier to distinguish when they
are referenced in the dialogue context.

5.3 Performance of Variants of Cache on
End-to-End TOD

As our design involves several templates for the
cache, we aim to assess the impact of various cache
templates on the performance of the end-to-end
TOD system. Table 5 shows that FiD-TOD us-
ing only names already outperforms MinT (BART-
Large), and adding descriptions further improves
the performance. For instance, FiD-TOD with
cache template “INTENT: intent name, service de-
scription, intent description, SLOT: slot name, slot
description” surpassess both MinT (BART-Large)
and FiD-TOD with cache template “INTENT: in-
tent name, SLOT: slot name” by 7.4% and 2.7% in
terms of Non-Empty JGA, respectively.

Influence of Irrelevant Information on the End-
to-End TOD Given the potential emergence of
unseen intents and slots in real-world scenarios, it
is challenging to expect a perfect retrieval module.

In this section, we first investigate the ability of
the TOD to ignore irrelevant retrieved information.
In this section, we first investigate “the TOD’s abil-
ity in learning to ignore irrelevant retrieved infor-
mation”. Table 6 shows the corresponding results.
As described in Sec 3.1, API-information includes
all intents and slots for the whole dialogue. The
retrieval module exhibits an 84.4% Top-1 accuracy
in retrieving all slot information in a single attempt,
as shown in Table 4. However, when setting N to
5, the retriever returns similar yet irrelevant infor-
mation despite a near 100% Top-5 recall accuracy.
This results in the inclusion of lots of irrelevant
intents and slots into the generative model. Interest-



... ...
SYSTEM: Do you want to make a reservation for 2 people in the restaurant?
USER: Yes, thanks. What’s their phone number?

INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: number of seats , number of seats to reserve at the restaurant
INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: time , tentative time of restaurant reservation
INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: date , tentative date of restaurant reservation
INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: restaurant name, name of the restaurant

RETRIEVAL:
(Predicted Top-5)

INTENT: ReserveRestaurant, a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: location , city where the restaurant is located

APICALL: (Gold)
api name = ReserveRestaurant ; date = 2019-03-01 ; location = San Jose ; number of seats = 2 ;
restaurant name = Sino ; time = 11:30

APICALL: (Predicted)
api name = ReserveRestaurant ; date = 2019-03-01 ; city = San Jose ; party size = 2 ;
restaurant name = Sino ; time = 11:30

APIRESP:
city = San Jose ; cuisine = Asian ; has live music = False ; phone number = 408-247-8880 ;
price range = moderate ; restaurant name: Sino; serves alcohol = False ; street address = 377 Santana Row

SYSTEM: The phone number is 408-247-8880.

Table 7: A predicted example on the development set. Red colors indicate incorrect predictions and light blue colors
indicate correct slots.

ingly, “API-information (N=1)” performs similar
to “API-information (N=5)”, suggesting that the
TOD is capable of learning to ignore irrelevant re-
trieved information.

Second, we investigate “if the TOD generator
relies more on the retriever when all retrieved in-
formation entries are stacked together”. In pursuit
of this objective, we compare FiD-TOD and FiD-
TOD-NoStack, with the difference being whether
the retrieved information entries are handled collec-
tively or separately. As shown in Row 3 of Table 6,
FiD-TOD-NoStack performs slightly worse when
not stacking all retrieved information directly with
a single dialogue context. This could be attributed
to the design of FiD-TOD-NoStack, which results
in repeated dialogue context during each retrieval
attempt and may hinder the retrieved information.

Error Analysis Despite the retrieval module
demonstrating relatively high Top-5 accuracy, there
is still room for improvement in the Joint Goal Ac-
curacy (JGA). Therefore, we examine potential
reasons for this discrepancy. Table 7 shows one
most frequently appeared error type, where the re-
trieval module successfully retrieve Top-5 informa-
tion entries from the cache. In terms of APICALL
prediction, the TOD accurately generates the in-
tent and associated values. Among the generated
slots,“city” and “party size” are semantically sim-
ilar to “location” and “number of seats”, respec-
tively. However, the two generated slots are incor-
rect as they belongs to different services. Upon

further inspection, we find these terms are from the
training cache. This suggests that the TOD genera-
tor does not completely rely on the retriever, and it
tends to memorize the training slot information en-
tries from the training cache, pointing towards the
need for better generalized abilities. Furthermore,
approximately 20% dialogue turns on the develop-
ments set shows this issue, suggesting a huge space
to improve the performance. We hypothesize that
data augmentation, such as entity replacements in
dialogue history, could be one possible way to mit-
igate this problem. We leave further exploration of
this issue to future work.

6 Conclusion

This paper aims to improve performance of end-to-
end TOD systems with a simple cache. We first con-
struct a simple cache with intents and slots and fine-
tune a retrieval module to retrieve most relevant
information entries. We then train the end-to-end
TOD model to reference and ground the dialogue
history and the retrieved information while per-
forming TOD generation. Experimental results on
a large-scale SGD dataset show that our approach
has superior performance over strong baselines.
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