
Proceedings of the 16th International Conference on Natural Language Generation: Generation Challenges, pages 84–100
September 11-15, 2023 ©2023 Association for Computational Linguistics

AIWolfDial 2023: Summary of Natural Language Division of 5th
International AIWolf Contest

Yoshinobu Kano1∗, Neo Watanabe1, Kaito Kagaminuma1, Claus Aranha2, Jaewon Lee3,
Benedek Hauer3, Hisaichi Shibata4, Soichiro Miki4, Yuta Nakamura4,

Takuya Okubo3, Soga Shigemura3, Rei Ito3, Kazuki Takashima3, Tomoki Fukuda3,
Masahiro Wakutani3, Tomoya Hatanaka3, Mami Uchida3,

Mikio Abe5, Akihiro Mikami5, Takashi Otsuki5, Zhiyang Qi6,
Michimasa Inaba6, Kei Harada6, Daisuke Katagami7, Hirotaka Osawa8, Fujio Toriumi3,

1Shizuoka University, 2University of Tsukuba, 3The University of Tokyo,
4The University of Tokyo Hospital, 5Yamagata University,

6The University of Electro-Communications, 7Tokyo Polytechnic University, 8Keio University

Abstract
We held our 5th annual AIWolf international
contest to automatically play the Werewolf
game “Mafia”, where players try finding liars
via conversations, aiming at promoting develop-
ments in creating agents of more natural conver-
sations in higher level, such as longer contexts,
personal relationships, semantics, pragmatics,
and logics, revealing the capabilities and limits
of the generative AIs. In our Natural Language
Division of the contest, we had six Japanese
speaking agents from five teams, and three En-
glish speaking agents, to mutually run games.
By using the game logs, we performed human
subjective evaluations and detailed log analysis.
This paper is jointly written by the organizers
and the participants. We found that the entire
system performance has largely improved over
the previous year, due to the recent advantages
of the LLMs. However, it is not perfect at all
yet; the generated talks are sometimes inconsis-
tent with the game actions, it is still doubtful
that the agents could infer roles by logics rather
than superficial utterance generations. It is not
explicitly observed in this log but it would be
still difficult to make an agent telling a lie, pre-
tend as a villager but it has an opposite goal
inside. Our future work includes to reveal the
capability of the LLMs, whether they can make
the duality of the “liar”, in other words, hold-
ing a “true” and a “false” circumstances of the
agent at the same time, even holding what these
circumstances look like from other agents.

1 Introduction

Recent achievements of generation models, e.g.
ChatGPT (OpenAI, 2023), are gathering greater

∗Correspondence to kano@kanolab.net

attentions. However, it is not fully investigated
whether such a huge language model can suffi-
ciently handle coherent responses, longer contexts,
common grounds, and logics. Our shared task,
AIWolfDial 2023, is an international open contest
for automatic players of the conversation game
“Mafia”, which requires players not just to commu-
nicate but to infer, persuade, deceive other players
via coherent logical conversations, while having
the role-playing non-task-oriented chats as well.
AIWolfDial 2023 is one of the INLG 2023 Gen-
eration Challenges for this year. We believe that
this contest reveals not just achievements but also
current issues in the recent huge language mod-
els, showing directions of next breakthrough in this
area.

“Are You a Werewolf?”, or “Mafia” (hereafter
“werewolf game”), is a communication game con-
ducted solely through discussion. Players must
exert their cognitive faculties fully in order to win.
In the imperfect information games (Bowling et al.,
2015), players must hide information, in contrast
to perfect information games such as chess or Go
(Silver et al., 2016). Each player acquires secret
information from other players’ conversations and
behavior and acts by hiding information to accom-
plish their objectives. Players are required persua-
sion for earning confidence, and speculation for
detecting fabrications.

We propose to employ this werewolf game as a
novel way of evaluations for dialog systems. While
studies of dialog systems are very hot topics re-
cently, they are still insufficient to make natural
conversations with consistent context, or with com-
plex sentences. One of the fundamental issues is

84



a lack of an appropriate evaluation. Because the
Werewolf game forces players to deceive, persuade,
and detect lies, neither inconsistent nor vague re-
sponse are evaluated as “unnatural”, losing in the
game. Our werewolf game competition and evalua-
tion could be new interesting evaluation criteria for
dialog systems, but also for imperfect information
game theories. In addition, the werewolf game al-
lows any conversation, so the game includes both
task-oriented and non-task-oriented conversations.

We have been holding an annual series of com-
petition to automatically play the Werewolf game
since 2014 (Toriumi et al., 2017), as the AIWolf
project 1. Our competitions were linked with other
conferences such as the competitions in IEEE Con-
ference On Games (CoG), ANAC (Automated Ne-
gotiating Agents Competition) (Aydoğan et al.,
2020)(Lim, 2020) in International Joint Confer-
ence on Artificial Intelligence (IJCAI), Computer
Entertainment Developers Conference (CEDEC),
etc., in addition to our AIWolfDial 2019 workshop
at INLG 2019 (Kano et al., 2019). These mean
that our contests attract interests from communities
of many areas including dialog system, language
generation, task- and non-task-oriented conversa-
tions, imperfect information game, human-agent
interactions, and game AI.

We have been providing two divisions in the
contests: the protocol division and the natural lan-
guage division. The protocol division uses our
original AIWolf protocol which is designed for
simplified language specific to the Werewolf game
player agents. In the natural language division,
player agents should communicate in the natural
languages (English or Japanese). The natural lan-
guage division is simple and natural goal of our
project, but very difficult due to its underlying com-
plexity of human intellectual issues. We focus on
this natural language division in this report.

In the natural language division of our contest,
we ask participants to make self-match games as
preliminary matches, and mutual-match games as
final matches. Agents should connect to our server
to match, i.e. participants can run their systems in
their own servers even if they require large compu-
tational resources. The game logs are evaluated by
human subjective evaluations.

Eight agents of seven teams participated in this
AIWolfDial 2023 shared task. Because our games
are held by five players, we held a mutual match

1http://aiwolf.org/

game in the Japanese language by six agents from
five teams, and another mutual match game in the
English language by three teams.

In the following sections, we explain the game
regulations of the AIWolf natural language divi-
sion in Section 2, detailed system designs for each
agent in Section 3, results of subjective evaluations
in Section 4.2 followed by discussions in Section 5,
finally conclude this paper in Section 6. This paper
is jointly written by the organizers and the partici-
pants, i.e. Section 3 is written by each participant,
the other sections are by the organizers, thus “we”
stand for the organizers except for i.e. Section 3.

2 Werewolf Game and Shared Task
Settings

We explain the rules of the werewolf game in this
section. While there are many variation of the
Were-wolf game exists, we only explain the our
AIWolfDial shared task setting in this paper.

2.1 Player Roles

Before starting a game, each player is assigned a
hidden role from the game master (a server system
in case of our AIWolf competition). The most
common roles are “villager” and “werewolf”. Each
role (and a player of that role) belongs either to a
villager team or a werewolf team. The goal of a
player is for any of team members to survive, not
necessarily the player him/herself.

There are other roles than the villager and the
werewolf: a seer and a possessed. A seer belongs
to the villager team, who has a special talent to
“divine” a specified player to know whether the
player is a human or a werewolf; the divine result
is notified the seer only. A possessed belongs to the
villager team but his/her goal is win the werewolf
team.

A game in the AIWolfDial 2023 shared task have
five players: a seer, a werewolf, a possessed, and
two villagers.

2.2 Day, Turn and Winner

A game consist of “days”, and a “day” consists of
“daytime” and “night”. During the daytime phase,
each player talks freely. At the end of the daytime,
a player will be executed by votes of all of the
remained players. In the night phase, special role
players use their abilities: a werewolf can attack
and kill a player, and a seer can divine a player.

85

http://aiwolf.org/


In the shared task, Day 0 does not start games but
conversations e.g. greetings. A daytime consists
of several turns; a turn is a synchronized talks of
agent, i.e. the agents cannot refer to other agents’
talks of the same turn. We set a maximum limit of
ten turns per day in AIWolfDial 2023.

The victory condition of the villager team is to
execute all werewolves, and the victory condition
of the werewolf team is to make the number of
villager team less than the number of werewolf
team.

2.3 Talk

An AIWolf agent communicates with an AIWolf
server to perform a game. Other than vote, divine,
and attack actions, an agent communicates in natu-
ral language only.

We intend to design our shared task to be played
by physical avatars in real time in future, rather than
to limit to communications in the written language.
Therefore, a talk text should be able to pronounce
verbally, while symbols, emojis, and any other non-
pronounceable letters are not allowed.

Because of the same reason, we set the maxi-
mum response time to be five seconds in the prior
contests. However, we set the response timeout
to be five minutes in this year, because we ex-
pected that many participants would use external
web APIs such as ChatGPT, which could cause
longer response time. We hope to shorten this talk
timeout again in future.

In this text-base multiple player game, it is not
clear that an agent speaks to which specific agent,
or speaks to everyone. Human players can use their
faces and bodies to point another player. In order
to specify which agent to speak to, an agent may
insert an anchor symbol (e.g. “>>Agent[01]”) at
the beginning of its talk.

Player agents are asked to return their talks agent
by agent in a serial manner, which order is ran-
domly changed every turn. This is different from
the humans’ verbal turn taking in that humans can
speak (mostly) anytime.

3 Participant Systems

Six agents from five teams participated our shared
task in the Japanese language, which agent names
are am, ChatWolf, k2b ara, k2b shigemura,
kanolab, sUper IL). Three agents from three
temas participated in the English language, which
agent names are HowlGPT, MIV, and kanolab,

where kanolab is their English version of their
original Japanese agent. Most of the agents used
ChatGPT in their system, while its usage is dif-
ferent between the agents; ChatWolf uses another
LLM, am employed a rule-based system.

We, the organizers, provided a template agent
code in Java and Python, in addition to the server
codes.

We describe each participant system in an alpha-
betical order in the following subsections. where
“we” stands for the corresponding participants, only
limited in this section.

3.1 am

am is created by Mikio Abe, and Akihiro Mikami
in Yamagata University.

We used an agent by m cre2, the runner-up in
the Natural Language Division of the 4th AIWolf
Competition held in 2018, which was a rule-based
agent system. For natural language analysis, m cre
use the morphological analyzer ”Juman3”, ”KNP4”
which performs syntactic analysis, case analysis
and reference resolution of Japanese sentences, and
a dictionary to which we added special words that
appear in Werewolf games. Our goal was to build
an agent that could speak naturally like a human
by adding the utterance patterns to the m cre agent,
which are seen in a Werewolf game between hu-
mans. We have added the following five elements.

The reaction against a CO of Seers When an-
other player makes a CO (Coming Out of roles) of
Seers, our agent responds to that player.

The reaction against a report of divination re-
sults When another player makes a report of div-
ination results, our agent responds to that player.

The utterance declaring the candidates for vot-
ing at the end of the day Our agent declares who
to vote for at the end of the day.

The utterances when distressed If there is noth-
ing to say, our agent says something like ”ummm”.

The questions that follow the flow of the game
Our agents speak when they have a question about
a game situation. For example, we ask other agents
who is the Seer at the beginning of the day, or we
ask the agent who divined our agent why he divined
us.

2https://github.com/mcre/aiwolf-4th-nlp
3https://nlp.ist.i.kyoto-u.ac.jp/?JUMAN
4https://nlp.ist.i.kyoto-u.ac.jp/?KNP

86



3.2 ChatWolf

ChatWolf was developed by Hisaichi Shibata,
Soichiro Miki, Yuta Nakamura of the University of
Tokyo Hospital.

3.2.1 Design

We designed the agent to have two models: the
talk model and the voting model. The talk model
can talk with other agents while the voting model
can vote (including attack voting) for the other
agents. These models run separately, and respond
to queries from the game server. We did not
handle the divination in the game with models
and ChatWolf divines other agents at random.
We adopted one of the LLMs (Large Language
Models) open to the public from CyberAgent
(Open-Calm-7b5) both for the talk model (we
used AutoModelForCausalLM in hugging
face transformers) and the voting model (we used
AutoModelForSequenceClassification
in hugging face transformers). Each model con-
tains approximately 7 billion parameters. For the
talk model, to adapt the LLM to the Werewolf
game, we executed a LoRA (Low-Rank Adaption
for LLM (Hu et al., 2021)) tuning with Japanese
Werewolf game logs6 newly collected by the
developers of ChatWolf. To systematically collect
the game logs, we developed UTRAD Werewolf,
which is a web browser-based platform to play
the Werewolf game with or without artificial
intelligence agents. We collected 48 game logs
(not open to the public). For details of the
log collection, see (Shibata et al., 2023). For
conditional text generation with the talk model,
we enabled the sampling to generate diverge
texts. The temperature of the sampling was
experimentally set to 0.7 and the repetition penalty
to 1.05. For the voting module, which can interpret
intermediate Werewolf game logs in Japanese
and vote for agents to attack or eliminate, we
attached a classification head on the LLM and
trained parameters in it with the same logs. The
training method with the classification head is well
known as transfer learning whereas LoRA is one
of the fine-tuning methods. The prompt (input)
to the both models contained instructions of the

5https://huggingface.co/cyberagent/open-calm-7b
6The log collection was partially supported by JST, CREST

Grant Number JPMJCR21M2, including the AIP challenge
program (Necessary conditions that personal claims are objec-
tive facts; PI: H. Shibata), Japan. We thank many participants
who played Werewolf again and again to generate game logs.

game, the latest 15 talks by all the participants,
the role and agent number of ChatWolf, and the
previous voting result if it exists. We executed the
inference with those models on a single NVIDIA
RTX-A6000 graphics processing unit with 48 GB
memory.

3.2.2 Background of ChatWolf design
Because the evaluation criteria of the regulation for
the natural language division do not refer to the
win ratio of the Werewolf game, we decided to give
priority on fluently talking natural language than to
wining the game.

If we adopt GPT-4 (Generative Pre-trained Trans-
formers 4; (OpenAI, 2023)) a.k.a. ChatGPT7, it
is expected to very fluently talk natural languages.
However, we specified disadvantages of GPT-4 as
follows:

• The tuning of the agents ends up in prompt-
engineering and not very interesting.

• Many teams would participate in the contest
with GPT-4. In the case, agents powered by
GPT-4 must be highly tuned up to differentiate
with the other GPT-4-based agents.

• Agents powered by GPT-4 could not be signif-
icantly novel.

• Should the server of GPT-4 be temporarily
down, we cannot play the game at all.

On the basis of this insight, we decided to develop
ChatWolf running on a local computer.

3.3 HowlGPT

HowlGPT is, when boiled down, a simple 3 layer
chain-of-thought reasoner.

At the lowest layer are the language models. An
abstraction layer allows our system to direct tem-
plated patterns of (recursive) queries either to a
locally running transformer, a distributed ”Petals”
backend, or the OpenAI API (gpt-3.5-turbo-16k).

Context lengths are fixed to 8K tokens for pre-
fix input and 8K generation when using OpenAI.
Chunk sizes of 16-64 are used for top-k generation.
These calls are used for ”large context” reasoning
and decision making.

Local models are used for reasoning
and decision-making. Local models de-
ployed include: mpt-7b-storywriter,

7https://chat.openai.com/auth/login

87



mpt-7b-instruct, gpt-medium,
gpt-xxl, Nous-Hermes-13b,
vicuna-7b-1.1.

For local models, context lengths are sized ap-
propriately to the model in use.

Different models were used for their different
strength. For example, gpt and bloom are largely
used for knowledge-management and summariza-
tion while mpt is used for introducing creative
elements to roleplay effort and Nous is used for
”smaller context” commonsense reasoning.

At the second layer, calls to/between these mod-
els are coordination by a query language runtime.

Two or three values from a large table of ”char-
acter descriptors” are chosen for each instance, to
give the agent some personality direction. An ini-
tial description and small ”backstory” is generated
for the instance character and given along with each
query to the language models.

Four ”temperature” values are also chosen ran-
domly - these are used to control sampling and
beam search for queries. These values are a ”sum-
marization” temperature which controls sampling
for internal summarization processes, a ”thought”
temperature which controls sampling during chain-
of-thought queries, a ”choice” temperature (fixed
to 0 for the competition play but allowed to vary
during training) which controls temperature when
making vote decisions, and a ”talking” temperature
for variability of spoken statements. (This makes
agents less predictable and their roles less identifi-
able to other agents.)

A simple sockio.aio socket is opened to the game
server and a small FSM handles the game proto-
col messaging. The events observed are translated
from their json representation into english represen-
tations, embedded and saved into a knowledge re-
trieval store, and stored in in-memory structures for
use in prompt constructions. Whenever new conver-
sation is seen, or new context is integrated, lengths
of queries are re-checked to confirm that they still
fit within the language model context widths. If
thresholds are passed (for example, 80% of the gpt-
3.5-turbo-16k’s 8k input window is consumed) then
the agent summarizes existing context information
before appending the newly received information.

A third RNN model layer is used as a supervi-
sory, to modify/reject any outputs from the models
which are deemed likely low quality or otherwise
problematic. This supervisory layer was trained
with a combination of self-play and human super-

vision.

3.4 k2b ara

k2b ara is created by Takuya Okubo, Kazuki
Takashima, Tomoya Hatanaka, Mami Uchida, Rei
Ito in the University of Tokyo.

We have developed an agent that performs the
following functions using BERT (Devlin et al.,
2018), GPT-3 (text-davinci-003) and GPT-4 (gpt-4-
0613) (OpenAI, 2023).

• Infer roles

• Plan strategies

• Accept or reject requests

• Answer questions

To actualize these features, our agent is com-
posed of eight different modules:

RoleEstimationModule Estimates the role dis-
tribution of each agent based on game information
(the number of each role, talk content, and divina-
tion results if available) utilizing BERT8. It con-
siders the sum of attentions from the other tokens
to the first token ([CLS]) across all 12 multi-head
attention layers in BERT as the basis for these esti-
mates and makes a list of word-attention pairs for
other modules to use9.

RoleInferenceModule Infers the roles of each
agent by GPT-4, which is given the estimation ba-
sis (a list of word-attention pairs obtained from
the fine-tuned BERT model above) and an certain
agent’s role distribution derived from the RoleEsti-
mationModule. It receives a list of word-attention
pairs as the basis for inference, selecting the top 10
phrases from this list as the rationale. Then, it gets
the response (inference result) from the GPT-4 with
the prompt, which includes the above rationale, fol-
lowed by an additional prompt, ”Please infer the
agent’s role based on the above information and
state the logical reason why you think so.”

8we used a pretrained model https:
//huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking
and fine-tuned it with about 500 werewolf game
logs scraped from an online werewolf game server
https://ruru-jinro.net/

9i.e. if ”hello, I divined Agent[01] were-
wolf” is in the talk history, then the list includes
[(”hello”,0.01),(”I”,0.03),(”divined”,0.9),(”Agent[01]”,0.1),
(”werewolf”,0.7)]

88

https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://ruru-jinro.net/


StrategyModule Determines whom to vote for,
whom to divine, and how to persuade other agents
with GPT-4, based on the role estimation results
obtained from RoleEstimationModule and Role-
InferenceModule. For instance, it selects the agent
with the highest probability of being a werewolf
or a possessed as the voting target calculated by
RoleEstimationModule, and generates the reason
for the role estimation using RoleInferenceMod-
ule. These information are then provided to GPT-4,
with an additional prompt, ”Based on the above
reasons, please persuade other agents to vote for
Agent[number].”, to generate a persuasive sentence.
The divination target is also chosen as the agent
with the highest probability of being a werewolf or
a possessed.

RequestProcessingModule Categorizes the re-
quests from others into three types (whom to vote
for, whom to divine, or other requests) using GPT-3
with few shot prompt, such as ”Q: Shall we vote
for Agent[01] A: whom to vote for”, ”Q: Would
you mind divining Agent[01] next? A: whom to
divine” and ”Q: Could you believe me a villager?
A: other requests”. Then, it determines whether to
comply with the request using the StrategyMod-
ule and RoleEstimationModule and generates the
response based on rule-based procedures.

QuestionProcessingModule Classifies the ques-
tions from others into four types (past behaviour,
future plan, its role prediction, and other questions)
with GPT-3 with few shot prompt, such as ”Q: Who
do you think as a posessed? A: other requests”,
”Q: Why did you vote him? A: whom to vote
for” and ”Q: Could you tell me the reason you
divined Agent[01]? A: whom to divine”. Then, it
determines the response to the question using the
StrategyModule and RoleEstimationModule and
generates the response based on rule-based proce-
dures.

InfluenceConsiderationModule Determines
whether the statement of a certain agent is directed
at itself using GPT-3 with few shot prompt, such
as ”Q: I think Agent[01] is a werewolf A: no”, ”Q:
please believe me a seer! A: request” and ”Q:
Who do you all vote for? A: question”. If it’s
a request or a question, then calls RequestPro-
cessingModule or QuestionProcessingModule
respectively and returns the response to its caller.

SpeakerModule Transforms personality-less
speech content into personality-rich speech content
using GPT-4.

IntegrationModule Integrates above seven mod-
ules and then sends information to the server. For
instance, when in the talk phase, this module selects
speech content from InfluenceConsiderationMod-
ule if it is not empty. Otherwise, it selects speech
content from StrategyModule. Then, it enriches
the speech content with SpeakModule and send
it to the server. When in the vote phase (divine
phase), it asks StrategyModule for whom to vote
for (divine) and send it to the server.

3.5 k2b shigemura

k2b shigemura is created by Soga Shigemura,
Tomoki Fukuda, and Masahiro Wakutani in the
University of Tokyo.

3.5.1 Design

We utilized a mixed model approach, using both
gpt-4-0613 and gpt-3.5-turbo-0613,
which are OpenAI’s models10. This allowed
us to leverage the precision of GPT-4 and the
speed of GPT-3.5. In terms of parameters, we
found that the best results were achieved by
retaining default values, aside from max tokens
which we set at 300 (temperature=1.0,
top p=1.0, presence penalty=0,
frequency penalty=0). With the exception
of prompts related to conversational expressions,
most of the prompts are written in English. This
is because prompts in English tend to have higher
accuracy and logical coherence, while prompts
related to conversational expressions in Japanese
are better conveyed in Japanese, resulting in
greater naturalness and creativity by using the
same language.

We also incorporated the OpenAI’s Function
calling feature, which was made public in June
202311. This Function calling feature can prevent
unintended responses when making requests to
OpenAI’s API, by sending a list of functions spec-
ified with JSON schema12 that defines the types
(such as string, integer, enum) as parameters.

10https://platform.openai.com/docs/models/overview
11https://openai.com/blog/function-calling-and-other-api-

updates
12https://json-schema.org/understanding-json-schema/

89



3.5.2 Model
Conversation Summarization Model Since it
was impossible to incorporate all game conversa-
tion into the prompt, we developed a Conversation
Summarization Model using gpt-3.5-turbo
to summarize each agent’s statement. To prevent
usage of the term ”agent” within the dialogue and
to simplify the conversation history, we converted
“Agent[01]” to “[1]” in advance, for example, then
reverted “[1]” back to “Agent[01]” after LLMs
processed. Inserting this Conversation Sum-
marization Model allowed us to transform self-
perspective statements like “I AM ABSOLUTELY
THE SEER!” into sentences like “Agent[01] claims
to be the seer.” This adjustment reduced the influ-
ence of blindly trusting other agents’ statements
when generating our own dialogue or making de-
cisions. It also prompted the addition of logical
coherence to our statements, such as “... because
Agent[03] has revealed Agent[05] as innocent”.

Dialogue Generation Model We employed GPT-
4 for dialogue generation to ensure logical coher-
ence and richness of expression. We provide the
following information to the model:

• Explanation of the rules of the werewolf game

• Each agent’s survival status

• Divination results

• Voting results

• The agent’s role and recommended behavior
in the current situation

For example, if it is the first day as a seer, this
agent should announce its divination results. If it
is the first day as a villager, this agent would wait
for the seer’s results. In case of a werewolf or a
possessed, if no other agent has claimed the seer
role, then this agent should claim to be the seer.

Instead of including all the “if” conditions in
the prompt, we varied the prompt depending on
the game situation. This is because LLMs are not
proficient at handling conditional branching.

Initially, our agent primarily make non-
committal and vague statements, such as “More
information is needed,” or “Let’s discuss this care-
fully.” In response to this, we have add prompts
to express doubts about other players even when
the agent is not completely sure in scenarios with
limited information. By doing this, our agent could

influence the dynamics of the game and stimulate
more revealing interactions, which in turn could
lead to more data for making informed decisions.

Action Decision Model This model is used for
making decisions such as voting, determining the
victim as a werewolf and a divination target as
a seer. We utilized the OpenAI’s Function call-
ing feature, which can limit the type of response,
to avoid selecting dead players or giving non-
committal answers like “I cannot decide which
agent to vote due to a lack of information”. The
information provided to this model is the same as
our Dialogue Generation Model.

3.5.3 Discussion

Utilizing the functionalities of GPT-4, our model
could generate statements that were both natural
and logical, such as “If Agent[02] were a were-
wolf, they wouldn’t engage in such conspicuous
behavior,” and “Both Agent[01] and Agent[02]
claim to be the seer, but they both present the
same results, leaving us in a dilemma over whom to
trust.” These instances demonstrate the advanced
language understanding and generation capabilities
of the model.

There were no agents that performed prompt in-
jection in this tournament. However, we aim to
incorporate countermeasures in upcoming compe-
titions. Nevertheless, it is conceivable that such
practices may be prohibited by the rules from the
beginning.

In future, a primary obstacle to achieving our
goal of humans and AI playing the Werewolf game
competitively is the latency often associated with
Large Language Models (LLMs) and machine
learning technologies. For reference, our agent cur-
rently takes approximately 15-30 seconds to gener-
ate a complete statement. Yet, by using stream set-
ting (in OpenAI’s API, stream=True), we can
have statements generated incrementally, thus mini-
mizing the waiting time for humans, irrespective of
whether they are communicating in text or speech.
We believe that the day when AI and humans can
play the Werewolf game without interruption is not
too distant.

3.6 kanolab

kanolab is created by Neo Watanabe, Kaito
Kagaminuma, and Yoshinobu Kano in Shizuoka
University.

90



We focused on the two main features of Chat-
GPT: its ability to generate fluent natural language,
and its ability to perform some inference. We ex-
plain our game behaviors below, i.e. talk, vote,
attack, and divine in this order.

3.6.1 GPT-4 and its settings
We used GPT-4 with setting parameters to model
= gpt-4-0613, temperature = 0.7,
top p = 0.75, frequency penalty = 2,
max tokens = 300, leaving other parameters
at their defaults.

3.6.2 talk
In the talk behavior, the prompts were given five
elements to generate natural conversation in the
Werewolf game: character setting, game strat-
egy, game conversation examples, conversation
history, and instructions regarding the specific
content of speech.

character settings This prompt includes name,
nickname, gender, personality, hobbies, and oc-
cupation; name specifies the Agent’s name, and
nickname specifies the name by which the agent
is called by other agents, such as Agent[01]; The
other gender, personality, hobbies, and occupation
are randomly selected from our predefined ones.

game strategy This prompt includes prompts im-
portant for the game to proceed strategically, such
as Werewolf game roles and number of roles, as-
signed role, strategic direction, and specific strat-
egy.

The werewolf game roles and number of roles
prompt is in the form of “Villager:1, Possessed:1”
to clarify the roles assigned in the game and how
many people are in them. assigned role includes
a prompt as Your position is villager. There was
a concern that the agent would openly disclose
(come out) his or her role, especially problematic
in possessed and werewolf ; we give a prompt as
seer if possessed assigned, and villager if werewolf
assigned to avoid such behaviours.

The strategic direction prompt is “Lead the vil-
lagers to victory by what you say.” when villager
or seer is assigned, and “Lead the Werewolf camp
to victory with your statement” when possessed or
werewolf are assigned.

The specific strategies prompt includes strategies
that are generally known to be effective in the were-
wolf games in order to encourage rational behavior.
We give two strategies: if there are more than two

seers come out, the following one divines the same
player; When there are multiple seers, players vote
around the agent who comes out as a seer.

werewolf game conversation examples This is a
few-shot prompting to give five or around examples
from the logs of the past werewolf games, expect-
ing that the use of anchors and ways of speech
during game behavior are learned.

conversation history We give the all agents’ pre-
vious conversation history as a prompt, aiming at
contextualizing the conversation with other agents.
Because the input token length of ChatGPT is 4096,
we make a summary of the conversation history
when the token length of the conversation history
exceeds every 1000 tokens, excluding last five talks;
this summary is incrementally generated by another
GPT-4, inputting that latest conversation history
and the previous summary if any exists. The main
GPT-4, which is in charge of generating talks, is
given the summary and a part of conversation his-
tory which is not summarized yet. We also give
information which agents are exit from the game
by votes and attacks.

specific speech instructions We give instruc-
tions on what kind of speech we wanted the agents
to say. For example, on Day 0, the participants are
not engaged in a conversation about the Werewolf
game but in the greeting phase with other agents,
so they are prompted to greet everyone before the
game. From Day 1, the agents are expected to en-
gage in conversations related to the Werewolf game,
so we give the following prompts: organizing the
situation based on the conversation history, pre-
dicting the positions of other agents and discussing
who can be trusted, soliciting opinions from other
agents, not repeating the same conversation, and
being logical in what you say. When seer is as-
signed, we asked to speak that “As a result of the
fortunetelling, Agent[01] was white. Please tell
this result to the other players” in the first talk of
the day from the first day.

3.6.3 vote, attack, and divine
The agent is require to nominate another agent in
the vote, attack, and divide game actions, which are
expected to be reasoned with based on the conver-
sation history. We give a prompt to GPT-4, which
consists of a summary of the previous conversa-
tions, the conversation history, to choose another
agent who is considered to be a threat to our agent’s

91



role. For example, we asked the agents in the vote
action that “Based on the summary and conversa-
tion history, answer the number of the player you
consider to be the most werewolf among Agent[01],
Agent[02], and Agent[03].” and asked them to
nominate one agent. If no agent nomination was
obtained from ChatGPT, we randomly choose an
agent.

When possessed is assigned, we use a special
pattern of prompts. On Day 1, our agent is asked
to nominate a player who should be a seer; If Chat-
GPT finds a seer from the conversation history, we
ask generating a talk that he/she is a werewolf ; Else
we randomly choose a agent and ask generating a
talk that he/she is a werewolf. On Day 2 and later,
we ask to nominate which agent to divine, and ask
generating that agent is a villager.

3.7 MIV

MIV is developed by Jaewon Lee and Benedek
Hauer in The University of Tokyo.

3.7.1 Background

The emergent capabilities of Large Language Mod-
els (LLMs) are attracting attention (Wei et al.,
2022). Emergent capability is defined as, ”an abil-
ity is emergent if it is not present in smaller models
but is present in larger models.” This ability mani-
fests when the number of parameters in a language
model surpasses a certain threshold. Specifically, it
refers to the In-Context-Learning ability for learn-
ing situational information within a particular con-
text.

The capability required of agents in this com-
petition is a ”human-like speaking ability.” Until
now, computational machinery has lacked the abil-
ity to ”read” context like humans. However, it
is proposed that by fully harnessing the emergent
capabilities of large language models, agents can
learn situational information, engage in speech, and
plan and execute actions (Park et al., 2023). In this
competition, our focus is on fully exploiting this
emergent capability.

3.7.2 Generative Agent

In this competition, the ”agent” must fulfill four
major roles. That is to say, each agent must main-
tain consistency in order to fulfill their expected
roles. Only when this consistency is ensured can
the acquired situational information be fully uti-
lized. To embody this condition, we employ the

”Generative Agent” framework proposed by Park
et al. 2023.

Utilizing this framework, based on the defined
agent roles, allows for customization of intentions,
personality, and other aspects while maintaining
consistency. Additionally, by providing the agent
with a memory structure, information can be ex-
tracted based on what has already been communi-
cated.

The memory structure of the agent works in a
weighted way, where each memory (string) is as-
signed a weight. This weight depends on the im-
portance of that memory and on the recency of
the memory. Therefore, an important information
that was recently given to the agent will affect the
agent’s next behavior/action more than an old less
important information.

In our case, the way our main agent system in-
teracts with our helper agent is through prompts
(natural language) as it is probably the easiest
way for the human system designers; we can ac-
centuate some words or tell the agent if some
task/information is relevant or not, which seems
very well suited for this task. For creating our
generative agent, we used a Python library called
Langchain, which contains a section about Genera-
tive Agents that provides more precision on their
mechanism and how to implement them.

3.7.3 Implementation
We implemented an agent of the following roles:
Werewolf, Seer, Villager and Possessed. In this sec-
tion, we explain the general skeleton of our agent
first, that is common in these roles. Then we ex-
plain details for each role.

General Skeleton When creating an agent, the
first thing that we do is initialize its memory and
fill it with information related to the game rules
and mechanism.

In Langchain, there is a module called
GenerativeAgentMemory, that will generate
the memory for a particular agent, by specifying
an LLM, a reflection threshold and a function that
acts as a memory retriever. For the memory re-
trieval, we used Faiss, a library for efficient simi-
larity search coupled with a time-weighted vector
store retriever which evaluates memory elements
(strings) based on their importance. For the LLM
we used ChatGPT of OpenAI, and for the reflection
threshold we used 8, however we don’t know how
this parameter changes the behaviour of the agent

92



since we did not experiment with other values. At
every game action (talk, vote, divine, attack), we
tell corresponding information to our agent to up-
date its memory. For example, if Player[01]
votes to eliminate Player[02] on Day 3, then
our agent will be told: ”Player[01] has voted to
eliminate Player[02] on day 3”.

Following subsections describe our implementa-
tion for each game action; then describe our imple-
mentation for each role, and ”personalities”.

talk Our core agent program behaves like a
helper that gives our main agent program hints
on what to do.

Our main agent program interprets what the
agent is saying, and transforms into a talk text to
be returned; our core agent will look through its
memory, say something relevant, or ask a question
(or provide an answer to another player if neces-
sary) in natural language. Since our core agent
acts as a helper, it will return statements such as

”I think you should say the following: ”Do you
think that Player[02] is a werewolf?”” or ”You
can say ”I am not a werewolf because I was asleep
that night” so that people don’t realize you are
a werewolf”. Since what we should say is inside
quotation marks, we will simply return the text
that is contained within the quotation marks, which
corresponds to the transformation process.

vote We tell our agent that it is now time to vote,
and it should vote for the most dangerous player
out there. That is, if a werewolf knows who a seer
is, then we would like the werewolf to vote out the
seer); if a seer (or a villager) knows who a werewolf
is, then that agent would vote out the werewolf.

Suspiciousness of another player is not deter-
mined by some metric, rather it is a decision that is
completely up to the generative agent to tell based
on the context it has received throughout the whole
game so far. When it is our turn to vote, we prompt
the agent: ”It is your time to vote, pick a player
who thinks we should eliminate based on the events
that happened so far”. We parse the agent’s output
and look for a particular player’s name, i.e. if the
sentence contains Agent[05] then we will vote to
eliminate Agent[05].

divine A seer agent picks a player whose role
is unknown for the agent yet. The process works
in the same way as the vote. We prompt the
agent: ”Since you are the seer you can get to know
another player’s role. Don’t choose yourself or

a player whose role you already know”. Then,
from the reply we extract the name in the same
manner as for the vote mechanism. When the
divined player’s role is revealed, we will tell our
seer agent that role. For example, if the divination
result was that Player[01] is a werewolf, we
supply the following information to our core agent:
"You have just discovered that
Player[01] is a werewolf. This
is an important information and
you should let the other players
know."

attack A seer is the most dangerous role for a
werewolf because a seer can reveal the werewolf’s
identity by divination. Therefore, when our were-
wolf agent is requested to attack, our agent will
most likely attack the seer if it knows who the seer
is. The way our agent is prompted similar to the
following: ”It is now your time to attack someone
as the werewolf. Tell me the name of the player you
want to attack. If you know who the seer is, then it
is better to attack them to increase your chances of
victory”. This way, if the seer has already revealed
themselves, the werewolf will most likely make the
decision to attack them.

In the following subsections, we describe the
general personalities and behaviours of our agents.

Langchain’s generative agents can be supplied
two different string fields:

• traits: traits, characteristics and personali-
ties of that agent

• status: the goal of the agent, what its pur-
pose is

This is very convenient for us, because in the
Werewolf game, each player has to have a different
personality and each player has a different goal (or
at least not all of them have the same goal).

Seer For the seer role, we set the traits to
be very positive, i.e. they are honest, transparent,
patient, etc. as they are basically the leader of the
villagers (non-malicious). We set its status just
to find out who a werewolf is.

Villager The villager role is the most basic one,
and their trait do not really matter, but we de-
signed them to be somewhat aggressive towards
other players (i.e. getting straight to the point), but
also transparent and honest. Their goal (status)
is to find out who the werewolf is.

93



Possessed The possessed role is one of the tricki-
est, and we believe that our implementation is still
not perfect for that role, as its main goal is to de-
ceive, and language models are either too obvious
or do not achieve deception at all, at least from
what we experienced. We therefore implemented
its traits as a compulsive liar, weird, funny and
dishonest, and its status as ”pretends to be a
werewolf”.

Werewolf The werewolf role is basically the
complete opposite of the seer. Its traits are
”dishonest, liar, non-transparent”, and its status
is ”blend in with other humans and act like you are
not a werewolf”.

Worst-Case-Scenario Sometimes, the response
of our agent (operated using the OpenAI API
GPT3.5-Turbo) is not very precise with its game ac-
tions, so we cannot always guarantee that our agent
will make a appropriate decision. Therefore, when
we are not able to infer the intention of the agent
during the vote,divine and attack phases, we will
override the core agent’s response by providing a
random player in the pool, though such a worst case
scenario is rarely used. This situation can happen
when the agent does not include another player’s
name in its answers. For example, if it answers ”I
don’t want to attack anyone”, or ”I’m not sure who
is the werewolf so I cannot decide who to vote out”,
then in this case we will choose a random player in
the list of players, using the same mechanism as a
RandomTalkAgent provided by the organizers.

Disadvantages A disadvantage of our agent is
passiveness, sometimes being fixated on a single
issue during the whole game. In our self-match
games (five MIV agents playing together), we no-
ticed that our agents are not very good at making de-
cisions and taking leadership, sometimes they were
so fixated on one small detail that they kept talking
about it throughout the whole day without making
much progress. We believe that a workaround to
this issue would be to filter out some information
from the agent’s memories, which is long-term and
irrelevant. In order to do so, we would need to
manually implement a mechanism that filters out ir-
relevant our outdated information from the agent’s
memory. However, since this mechanism would be
very dependent on the situation, the conversation,
and the game, defining such a rule was out of our
reach, because we would still need to keep the ”im-
portant” and ”most-relevant” information for the

agent to be functional.

3.8 sUper IL

sUper IL is created by Zhiyang Qi in The Univer-
sity of Electro-Communications.

The sUper IL system is based on the ChatGPT
API (OpenAI, 2023). It is widely known that using
suitable prompts with the ChatGPT API often leads
to good text generation. Therefore, this system
adjusts the prompt according to the role and game
progress to facilitate dialog generation in different
situations.

Specifically, for the four roles of werewolf, vil-
lager, seer, and possessed, four different prompts
were created and adjusted based on the ”day” pro-
gression. These prompts include the basic rules
of the game, the agent number, the assigned role,
and role-specific instructions. For example, for the
werewolf, the prompt could be as follows: ”The
basic rules are... you are Agent[x], and your role
is werewolf. The following are essential guidelines:
1. Never reveal that you are a werewolf to conceal
your identity; 2. If someone accuses you of being a
werewolf, resist strongly; 3. Provide false informa-
tion or view other players with suspicion to protect
yourself; 4. Actively participate in conversations
to gain the trust of the villagers.”

On the second ”day”, part of the prompt will be
replaced with specific information such as ”It is the
second day, and there are three players left. The
strategy is three: 1. If the seer is present and iden-
tifies you as a werewolf, call for a vote by accusing
the seer of being a werewolf; 2. If the possessed
shows up, confidently state that you are a werewolf;
3. Otherwise, choose one of the remaining players,
contradict their statements, and vote to oust them.”

Furthermore, to ensure the consistency of the
generated responses, the entire conversation history
of the day was appended to the prompt each time a
response was generated. Additionally, this system
utilizes zero-shot prompt, which implies that the
prompt do not incorporate any conversation history
beyond the current game.

Due to ChatGPT’s tendency to generate safe and
non-advancing responses like ”I agree with all your
opinions. By sharing information and promoting
discussion, we will find inconsistencies and suspi-
cious points” or ”I will actively participate in the
discussion and help find the werewolves. I will
elicit your opinions and questions and share de-
tailed information with you”, efforts were made

94



to minimize this behavior in self-matches. The
first sentence of each day’s response is generated
based on rules to avoid these responses. Addition-
ally, different strategies were employed to ensure
game variety. For example, for the werewolf, the
following three possible responses were generated:

• I am a villager who is not well informed. Let’s
work together to protect our village.

• I am a seer, I divined Agent[x] and the result
was human. Please take this information into
account in future discussions and votes.

• I am a seer, and I divined Agent[x], but the
result was a werewolf. Be vigilant against
Agent[x].

Each of these three responses leads to a different
direction for the game, and after that response is
generated, the prompt text is modified accordingly.
Regarding the ChatGPT API model, the system
used gpt-3.5-turbo-0613 in the preliminary
contest, and gpt-4 in the final contest.

Lastly, the sUper IL system is installed with only
talk module, voting, divination and attacks based
on random selection.

4 Subjective Evaluation Results

All of our shared task runs are in a five players were-
wolf games as described earlier. Our shared task
runs were performed in self-matches and mutual
matches. The same five player agents play games
in the self-matches; different five player agents
play games in the mutual-matches. The shared task
reviewers are required to perform subjective evalu-
ations based on game logs of these matches. The
game logs will be available from the our website
13.

4.1 Evaluation Metrics
We performed subjective evaluations by the follow-
ing criteria, five level scores (5 for best, 1 for worst)
for each:

A Naturalness of utterance expressions

B Naturalness of conversation context

C Coherency (contradictory) of conversation

D Coherency of the game actions (vote, attack,
divine) with conversation contents

13https://kanolab.net/aiwolf/

E Diversity of utterance expressions, including
coherent characterization

This subjective evaluation is based on both self-
match games and mutual match games. This sub-
jective evaluation is same as the evaluations in the
previous AIWolf natural language contests.

4.2 Results

Table 1 and Table 2 show the results of the hu-
man subjective evaluations for Japanese language
and English language, respectively. Four organiz-
ers, who do not commit to the participant systems,
evaluated the Japanese agents; three English fluent
evaluators including external staffs evaluated the
English agents. Each cell ranges from 1 (lowest)
to 5 (highest), the All-Average column shows aver-
ages over these human evaluators. Cells of highest
scores are highlighted in bold for each metric and
in total.

5 Discussion

5.1 Score-wise Analysis and Generative AIs

In this subsection, we discuss the subjective evalu-
ation scores shown in Table 1 and Table 2.

Most of the participant systems rely on OpenAI
ChatGPT, while am is a rule-based system and
ChatWolf uses another LLM. sUper IL obtained
the best score in average, A (expression), B (con-
text), and C (coherency); these scores are higher
in other ChatGPT-based systems, showing the nat-
ural generation performance of ChatGPT, even in
context and coherency in this mostly sentence-pair
level.

Regarding D (game action), am obtained the best
score, suggesting that their hand-crafted precisely
tuned rules work better than prompt-based gener-
ations. While the talk history is input as prompts,
some of the talks might mislead the generation re-
sults due to the agent’s unstable superficial talks
and the other agent talks; when the talk history
exceeds the maximum input length, some of the
talk history could be missed which are important
to decide the game actions.

Regarding E (diversity), ChatWolf and Kanolab
obtained the best scores in Japanese, HowlGPT
in English. The reason would be that ChatWolf
does not rely on ChatGPT but uses a smaller LLM
with LoRA, kanolab created many prompts to play
different characters, and HowlGPT uses not just
ChatGPT but other local LLMs.

95



Table 1: Subjective Evaluation Results for Japanese Language Games

A B C D E All
Team Expression Context Coherency Game Action Diversity Average
am 3.400 3.350 3.450 3.800 2.100 3.220

ChatWolf 3.050 2.400 2.600 2.700 4.150 2.980
k2b ara 4.075 3.825 3.250 3.075 3.425 3.530

k2b shigemura 3.625 3.250 3.125 3.375 3.375 3.350
kanolab 3.575 3.900 3.750 3.500 4.150 3.775

sUper IL 4.450 4.200 4.050 3.550 3.800 4.010

Table 2: Subjective Evaluation Results for English Language Games

A B C D E All
Team Expression Context Coherency Game Action Diversity Average

HowlGPT 2.667 1.667 2.667 2.000 3.333 2.460
MIV 3.333 3.667 3.000 3.667 2.333 3.200

kanolab 3.333 2.667 3.000 2.667 2.667 2.860

We cannot directly compare the evaluation
scores between Japanese and English because eval-
uators are different, the kanolab agent in English
is the same as it in Japanese other than it adds
a prompt instruction to speak in English, thus
we could compare the results using the scores of
kanolab as a pivot. Because MIV obtained bet-
ter scores than kanolab, MIV might show good
performance in Japanese as well, though not sure
due ChatGPT shows better performance in English
than in Japanese.

5.2 Log Analysis

We pick one of the mutual-game logs14 to analyze
in detail. Table 4 shows the game’s log of Day 1,
Table 5 shows the game’s log of Day 2, and Table 3
shows the game’s players with their roles and game
actions. We translated the original log in Japanese
into English, cut off some of the logs which would
not affect the game and talk contents.

Table 4 and Table 5 show a column of my in-
terpretation w.r.t game actions, where “Not mean-
ingful” means a talk text that can be used anytime,
“Not make sense” means a talk that is hard inter-
pret its meaning in the conversation context. We
found that the sentence expressions are very nat-
ural throughout the conversations, but sometimes
contextually wrong especially when it comes to the
roles, e.g. which talk is whose one.

The game actions, votes and attacks, are quite

14https://kanolab.net/aiwolf/2023/main/
multi/0708160231_000_chatWolf_kanolab1_
sUper_IL_am_k2b_ara1.log

inconsistent with the talks. Agent[01], sUper IL,
did not implement the game actions but selects
randomly, but other game actions seem to ignore
the COs (Coming-Outs) of the roles.

5.3 Evaluation Metrics
A win rate could be another potential criteria, but
we have not used the win rate due to the following
reasons. Firstly, we cannot run sufficient number
of games to measure statistically meaningful win
rates, as there are many possible role combina-
tion patterns. Secondly, the agents should ”under-
stand” their utterances each other as a presumption
to measure win rates, but the agent talks in the pre-
vious years were not that level of communications.
Thirdly, the werewolf game itself is not necessarily
intended to simply win the game, but rather aims to
play an interesting game. Finally, we would like to
directly measure the quality of the natural language
generation; an agent could win without meaningful
conversations.

6 Conclusion and Future Work

We held our 5th annual AIWolf international con-
test to automatically play the Werewolf game
“Mafia”, where players try finding liars via con-
versations, aiming at promoting developments in
creating agents of more natural conversations in
higher level, such as longer contexts, personal rela-
tionships, semantics, pragmatics, and logics.

We performed human subjective evaluations and
detailed log analysis. We found that the entire
system performance has largely improved over the

96

https://kanolab.net/aiwolf/2023/main/multi/0708160231_000_chatWolf_kanolab1_sUper_IL_am_k2b_ara1.log
https://kanolab.net/aiwolf/2023/main/multi/0708160231_000_chatWolf_kanolab1_sUper_IL_am_k2b_ara1.log
https://kanolab.net/aiwolf/2023/main/multi/0708160231_000_chatWolf_kanolab1_sUper_IL_am_k2b_ara1.log


Table 3: Roles and game actions in example log (Abbreviations in the Status columns are Excted: Executed, Attcked:
Attacked

Agent Agent Role Divination Vote Vote Divination Status Vote Status
ID Name #1 #2
01 sUper IL Seer Agent[02] 4 3 Agent[05] Excted -
02 k2b ara Possessed - 1 5 - Attcked -
03 am Werewolf - 4 4 - Alive 4 Alive
04 kanolab Villager - 2 2 - Alive 3 Excted
05 ChatWolf Villager - 1 2 - Alive 4 Attcked

previous year, due to the recent advantages of the
LLMs. However, it is not perfect at all yet; the
generated talks are sometimes inconsistent with
the game actions, it is still doubtful that the agents
could infer roles by logics rather than superficial
utterance generations. It is not explicitly observed
in this log but it would be still difficult to make an
agent telling a lie, pretend as a villager but it has
an opposite goal inside.

Our future work includes to reveal the capability
of the LLMs, whether they can make the duality of
the “liar”, in other words, holding a “true” and a
“false” circumstances of the agent at the same time,
even holding what these circumstances look like
from other agents, further reflecting such observa-
tions of other agents. This would be possible by
introducing the “whisper” feature which communi-
cates with the werewolves only, employing more
than five players in a game.

Another interesting demonstration would be to
mix a human player with machine agents. Cur-
rently the LLM based agents talk longer time than
humans to reply, sometimes minutes, thus acceler-
ation of the agent system responses is a technical
issue in future.

Acknowledgments

We wish to thank shared task reviewers for perform-
ing the subjective evaluations, and the members of
the Kano Laboratory in Shizuoka University who
helped to run the shared tasks. This research was
partially supported by Kakenhi, MEXT Japan. The
individual system description in this paper was writ-
ten by corresponding team members and reviewed
by the organizers, the rest of the paper was written
by the organizers.

References
Reyhan Aydoğan, Tim Baarslag, Katsuhide Fujita,

Johnathan Mell, Jonathan Gratch, Dave De Jonge,
Yasser Mohammad, Shinji Nakadai, Satoshi Mori-
naga, Hirotaka Osawa, et al. 2020. Challenges and
main results of the automated negotiating agents com-
petition (anac) 2019. In Multi-Agent Systems and
Agreement Technologies: 17th European Conference,
EUMAS 2020, and 7th International Conference, AT
2020, Thessaloniki, Greece, September 14-15, 2020,
Revised Selected Papers 17, pages 366–381. Springer.

Michael Bowling, Neil Burch, Michael Johanson, and
Oskari Tammelin. 2015. Heads-up limit hold’em
poker is solved. Science, 347(6218):145–149.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yoshinobu Kano, Claus Aranha, Michimasa Inaba, Hiro-
taka Osawa, Daisuke Katagami, Takashi Otsuki, and
Fujio Toriumi. 2019. Overview of the aiwolf-dial
2019 shared task: Competition to automatically play
the conversation game “mafia”. In In proceedings of
the 1st International Workshop of AI Werewolf and
Dialog System (AIWolfDial 2019), the 12th Interna-
tional Conference on Natural Language Generation
(INLG 2019).

Bryan Yi Yong Lim. 2020. Designing negotiation
agents for automated negotiating agents competition
(anac).

OpenAI. 2023. GPT-4 technical report. arXiv, pages
2303–08774.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S
Bernstein. 2023. Generative agents: Interactive
simulacra of human behavior. arXiv preprint
arXiv:2304.03442.

97

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


Hisaichi Shibata, Soichiro Miki, and Yuta Nakamura.
2023. Playing the Werewolf game with artificial intel-
ligence for language understanding. arXiv preprint
arXiv:2302.10646.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

Fujio Toriumi, Hirotaka Osawa, Michimasa Inaba,
Daisuke Katagami, Kosuke Shinoda, and Hitoshi
Matsubara. 2017. Ai wolf contest—development
of game ai using collective intelligence—. In Com-
puter Games: 5th Workshop on Computer Games,
CGW 2016, and 5th Workshop on General Intelli-
gence in Game-Playing Agents, GIGA 2016, Held
in Conjunction with the 25th International Confer-
ence on Artificial Intelligence, IJCAI 2016, New York,
USA, July 9-10, 2016, Revised Selected Papers 5,
pages 101–115. Springer.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

98



Table 4: Example game log (Day 1)

Day 1
Turn Agent Talk Interpretation
ID ID w.r.t Game Actions
0 01 Ladies and gentlemen, last night I read Agent[02]

as a fortune teller. As a result, Agent[02] was found
to be human. By sharing this result with everyone,
there is no need to suspect Agent[02] as a werewolf.

CO as a seer, divination of
Agent[02] to be a human

0 04 What shall we talk about today? I would like to hear
your opinion.

Not meaningful

0 02 I will call myself a fortune teller. Agent[04] was a
human.

CO as another seer, divina-
tion result to Agent[04] to
be a human

0 05 I want to guess the man Not make sense
1 01 Agent[02], I am the true fortune teller. Avoid misun-

derstandings. We should find a werewolf.
Insists that he/she is the
true seer

1 04 >>Agent[02] I see, you guessed that I was human.
thank you. But even so, I’m surprised that two for-
tune tellers came out! Which result should I believe
in? What do you guys think?

Consistent response to
the divination result of
Agent[04]

1 02 Agent[01] and Agent[02] are said to be fortune tellers,
but if there are other fortune tellers among you, please
let me know.

It is correct that Agent[01]
and [02] came out as seers,
but [02] is this speaker it-
self so irrelvant

1 05 Well, I’m sure I’m suspicious... Probably not understand-
ing other talks

2 03 >>Agent[01] I figured out Agent[01]’s fortune teller
CO.

Makes sense

2 05 Is there anyone else who claims to be a fortune
teller...?

Not meaningful

2 01 I am a real fortune teller. It’s suspicious that
Agent[02] claims the same title as me. Consider
voting for her.

Insists that he/she is the
seer, blamed another seer
as fake

2 02 Ladies and gentlemen, if I believe Agent[03]’s state-
ment as a fortune-teller, then Agent[04]’s claim
to be a self-proclaimed fortune-teller is false. So
Agent[04] is more likely to be a werewolf or a lu-
natic. It means that we should vote for Agent[04] to
keep the villagers safe.

Wrong to regard
Agent[03] and Agent[04]
as seers

2 04 >>Agent[05] Why do you feel suspicious? Please
give a specific reason.

Probably responded to pre-
vious previous utterance
of Agnet[05] but unnatu-
ral

3 05 If we had 100 votes every day, who would win... Not meaningful
3 03 hmm
3 01 If Agent[02] calls herself a fortune teller, she’s suspi-

cious. Consider voting for her. Because I am a true
fortune teller.

The same issue again, cor-
rect

...

99



Table 5: Example game log (Day 2)

Day 2
Turn Agent Talk Interpretation
ID ID w.r.t Game Actions
0 04 Well, it hurts that Agent[02] and Agent[01] left at

this time. It’s a big loss for us villagers.
Correctly reflects that
Agent[01] and [02] were
exit

0 05 Thank you. Well, in the case of a system like this, I
feel that trusting each other would be more advanta-
geous, so I’ll wrap up early and trust Agent [03].

Not so meaninful

1 03 it seems there are more of us now. Wow, I’m a were-
wolf

CO as a werewolf, sug-
gested a power-play

1 05 Yes. I will leave it to someone else. Thank you for
your hard work.

Probably a response to
Agent[04] (Note that talks
of the same turn is not vis-
ible)

1 04 Agent[05], I have decided to trust Agent[03] just like
you. From what he says and does, it feels like he’s
telling the truth, and the other players seem to trust
him. Let’s follow his course of action from now on!

A response to Agent[05]
of Turn 0

2 04 Agent[03] said he was a werewolf. On the other hand,
Agent[05] took the attitude of letting it go without
objecting. What the heck is going on here? This
situation looks very suspicious to me.

Probably does not under-
stand the turn-wise infor-
mation

2 05 Thank you very much. Well, tomorrow I will be the
fortune teller. Thank you all.

Not make sense

2 03 Vote for Agent[04]. Not so meaningful
3 05 I understand. Thank you very much. Not make sense
3 04 Agent[03], what do you mean by asking me to vote?

I’m just a villager. But since you called yourself a
werewolf, I don’t think you have any other options.
Everyone, let’s go to Agent[03] in the next vote!

Quite reasonable

3 03 I’m voting for Agent[04]. The same as previous talk
4 05 Sorry, I made a mistake. Not make sense?
4 03 I want to eat delicious humans! Role-play as a werewolf
4 04 Guys, it looks like I’m being targeted today. But think

about it. If I’m a werewolf, who would Agent[03]
be? He himself called himself a werewolf! From that
point of view, there doesn’t seem to be any reason to
execute me.

Reasonable

5 04 >>Agent[03] Do you think I’m that good? But
please stop eating humans. Anyway, what made you
so sure you were a werewolf? Any special informa-
tion?

Suspecting werewolf’s
CO, assuming Agent[03]
is a possessed?

5 05 Eh? Did you say that?! If that’s true, then I’m des-
tined to be killed...? That’s not true...??

To which talk??

6 05 done What?
6 04 >>Agent[05] Don’t panic, you’ll be fine. We’re still

alive and we have clues to find the werewolves. Also,
I think Agent [03], a self-proclaimed werewolf, is
acting suspiciously... what do you think?

Reasonable

7 04 >>Agent[03] If you say you’re a werewolf, why are
you under suspicion about me? Besides, as a result
of fortune-telling several times so far, if anything, it’s
closer to the villagers...

Makes sense?

100


